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I. Quantum Chromodynamics: formulation

• Non-abelian gauge theory (Yang - Mills, 1954).

• Quark model (Gell-Mann, Zweig, 1964).

• Discovery of new quantum number of quarks called colour (Bogolyubov-
Struminski-Tavkhelidze; Nambu-Khan, 1965).

• Perturbative quantization of nonabelian gauge models (Faddeev-Popov,
1967).

• Proof of the renormalization of non-abelian models (’t Hooft, 1969-
1971).

• Lagrangian of QCD (Fritzsch-Gell-Mann-Leutwyler, 1973).

• Discovery of asymptotic freedom (Politzer, Gross-Wilczek, 1973).

• Non-perturbative quantization of gauge models and proof of confine-
ment in the strong coupling regime (Wilson, 1974).



Quantum numbers and masses of quark flavours

q B J Q m (MeV)
u 1/3 1/2 2/3 2.3
d 1/3 1/2 -1/3 4.8
s 1/3 1/2 -1/3 95
c 1/3 1/2 2/3 1275
b 1/3 1/2 -1/3 4180
t 1/3 1/2 2/3 173210

B is the baryon number, J is spin, Q - electric charge and m - quark
mass. Examples: proton p = uud, neutron n = udd, ∆++ = uuu.

Quark flavours: u - up, d - down, s - strange, c - charm, b - beauty, t - top.
Quarks can be in 3 colour states: red, green, blue.

Gauge (gluon) fields are massless at the classical level.



Lagrangian which possesses local gauge symmetry and describes
interaction between Nf species of fermions has the following form in the

continuum

L = −
1

g2
TrFµνF

µν +

Nf∑

f=1

Ψf [iDµγµ −mf)] Ψf ,

where the strength tensor of the gauge field is

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν] , Aµ = Aaµt
a .

and the covariant derivative reads

Dµ = ∂µ − iAµ .

µ = 1, ..., d, where d is space-time dimension. ta ∈ A(G) are generators
of an algebra A(G) of some gauge group G, a = 1, ..., Nc. mf is bare

fermion mass and Nf is a number of fermion species. g2 is the bare
coupling constant. The action takes the form

S(A,Ψf
,Ψf) =

∫
ddx L

The theory which describes the strong interaction of quarks is called
Quantum Chromodynamics, or in short, QCD.



Main properties

1. QCD Lagrangian is invariant under local transformations. If U(x) ∈ G

L(Aµ,Ψ
f
,Ψf) = L(A′mu,Ψ

′,f
,Ψ′,f) ,

A′µ = U(x)AµU
+(x)− i[∂µU(x)]U+(x) ,

Ψ′,f = Ψf
U+(x) , Ψ′,f = U(x)Ψf .

2. Elitzur theorem: Gauge symmetry cannot be spontaneously broken.

3. When mf = 0, QCD Lagrangian is invariant under global chiral trans-
formations U(Nf)× U(Nf).

4. Let Z ∈ Z(3) be center element of SU(3)

Z = exp [iλ8 ω8] = exp
[
2πik

3

]
I , ω8 =

2πk√
3
, k = 0,1,2 .

Then, gauge fields are invariant under global Z(3) transformations.
Quark fields transform like above.



Non-perturbative quantization

The action which has been proposed by Wilson for SU(N) LGT is
defined in terms of the plaquette variables

S[U ] = β
∑

x,µ<ν

(
1−

1

N
Re TrUµν(x)

)
,

where the sum extends over all plaquettes of the lattice and β is the
inverse bare coupling constant. Gauge field matrices Uµ(x) ∈ G and are

taken in the fundamental representation of the group and

Uµν(x) = Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν(x) .

Quantum theory is given by the sum over all gauge field configurations

Z =
∫ ∏

x,µ
dUµ(x) exp (−S[U ]) .



II. Strong interactions

Observable particles are not quarks but hadrons: baryons (bound state of
3 quarks) and mesons (bound state of quark–antiquark pair). QCD must

describe 1) how quarks are bound into hadrons and 2) how hadrons
interact with each other.

Naive quark model of mesons and baryons



Proton in QCD





III. Quantum Chromodynamics: problems of the strong interactions

For QCD to successfully describe the strong force, it must have at the
quantum level the following three properties, each of which is dramatically

different from the behaviour of the classical theory:

• the nuclear force is strong but short-ranged
→ QCD must have mass gap

• we have to explain quark masses
→ QCD must have chiral symmetry breaking

• we never see individual quarks
→ QCD must have quark confinement



There does not exist a convincing, whether or not mathematically
complete theoretical computation demonstrating any of the three

properties (mass gap, confinement, chiral symmetry breaking) in QCD, as
opposed to a severely simplified truncation of it.

Classical properties of gauge theory are within the reach of established
mathematical methods. On the other hand, one does not yet have a

mathematically complete example of a quantum gauge theory in
four-dimensional space-time, nor even a precise definition of quantum

gauge theory in four-dimensions.



IV. Short-range nature of the strong interactions

Quarks inside hadrons interact very strongly. After a limiting distance
(about the size of a hadron) has been reached, it remains at a strength of
about 10,000 newtons , no matter how much farther the distance between
the quarks. The strong force is much weaker between colourless objects

like neutrons and protons: the potential decreases exponentially fast.

How one could explain this property? The main conjecture is that QCD
has a mass gap. Gluons are massless at the classical level. In reality,

gluons cannot exist as coloured states: they are confined and can form
bound states called glueballs. Glueballs are massive composite particles.

Hadrons cannot interact via exchange of massless gluons but only via
massive glueballs and light mesons, therefore the force falls rapidly with

distance between hadrons.



Example: description of lattice data for the baryonic susceptibilities by the
hadron resonance gas (HRG) model (ideal gas of hadrons)

HRG describes perfectly well lattice data for most thermodynamical
quantities up to the deconfinement phase transition point ≈ 160 MeV.



The only theory confining electric charges at all values of the bare
coupling and for which the generation of the mass gap was proven is

three-dimensional U(1) gauge theory. Mechanism of the confinement
and the mass gap generation appears to be tightly connected.

Z =
∑

mx

exp


−π2β

∑

x,y
mxGx,y(0)my


 .

Gx,y(0) is massless photon Green function. Contribution of the monopole
configurations {mx} gives rise both to non-zero string tension and to
mass of the gauge field: Gx,y(0) (and so photon) becomes massive.

How this mass gap generation agrees with the perturbative expansion
which relies on the existence of the continuous spectrum and massless
gauge fields? The mass gap is exponentially small in the bare coupling,
m ∼ e−β. Therefore, PT, as an expansion in 1/β, cannot feel it by its very

virtue.



Gluons in QCD are massless but they do not appear in the spectrum.
What can appear in the spectrum are massive colourless states called
glueballs. Glueball masses in QCD are calculated from the exponential

decay of the connected part of the (properly modified) plaquette-plaquette
correlation function

〈
TrU(p) U(p′)

〉
c
∼ e−m|x−y| .

Exact form of this correlation depends on the quantum numbers of
glueball JPC . Numerical results for some lightest glueball masses

0++ 1709 Mev
2++ 2388 Mev
0−+ 2557 Mev



The problem of the mass gap generation is summarized in

The Millenium problem: Quantum Yang-Mills Theory
A. Jaffe, E. Witten

Yang-Mills Existence and Mass Gap: Prove that for any compact
simple gauge group G, a non-trivial quantum Yang-Mills theory

exists on R4 and has a mass gap ∆ > 0.



V. Mass of visible matter in the Universe

The whole is equal to the sum of its parts. This rule is true about almost
everything in the Universe. If you were to break a human being down into

our constituent components, the cells in our body would add up to our
entire selves. Same for the molecules in our cells and the atoms in our
molecules. But when we get down to atomic nuclei, something funny

happens: the individual protons and neutrons are about 1 percent heavier
than the atoms as a whole. That is a clue as to what’s happening, but it

cannot prepare us for the most mind-boggling fact: the quarks that make
up the proton are only 0.2 percents of the protons actual mass!

mu = 2.3 Mev, md = 4.8 Mev, mp = 938 Mev
Where the difference come from?

Approximately 99 percents of the mass of visible matter in the Universe is
due to protons and neutrons.



Chiral symmetry of QCD

Consider the following transformations of the quark fields

U(Nf)× U(Nf) = SUL(Nf)× SUR(Nf)× UV (1)× UA(1)

Chiral rotations act on Ψf
L,R = 1±γ5

2 Ψf and leave kinetic part of the
QCD Lagrangian invariant. The mass term breaks this symmetry

explicitely. However, as masses of u and d quarks are very small, this
explicit breaking can be neglected in the first approximation in the theory

with two or even three lightest flavours.

The main conjecture is that QCD has a spontaneous chiral symmetry
breaking.

The order parameter of this breaking is called quark condensate

σ =
Nc∑

i=1

Ψ̄f
i Ψf

i

If σ 6= 0, the resulting effective theory of hadron bound states of QCD has
a mass term both for mesons and for baryons. Unfortunately, such

effective theory can be reliably computed only in the strong coupling limit.



The spontaneous symmetry breaking may be described in analogy to
magnetization. As example: two-dimensional Ising model in the external

magnetic field

Average magnetization < M > vs external magnetic field B for β = 0.75

( the critical value βc ≈ 0.44, B = 0 ).



Average magnetization < M > vs external magnetic field H for
β = 0.769 (triangles), β = 0.4407 (circles), β = 0.303 (squares). The

critical value βc ≈ 0.44, B = 0.



Hadron masses can be computed from the two-point correlation functions:

〈O(t1, x) O(t2, x)〉c ∼
∑

n
Cn e

−mn|t1−t2| .

Operators O(t, x) are composed of quark fields Ψa
f , γ and group

matrices to form colourless state with desirable quantum numbers and
symmetry properties. Even if such operators are local (not the case for
realistic hadrons) thanks to universality their correlations should behave

as exact hadron correlations near the continuum limit.



Hadron masses obtained in lattice QCD by Budapest-Wupertal group
(2009)

The light hadron spectrum of QCD. π, K, Ξ are used to set masses of
u, d, s quarks.



VI. Why we do not see the most fundamental particles

Mass gap generation in QCD is not a unique phenomenon. One
encounters similar ones in a variety of systems ranging from classical spin

models to many other QFTs.

Spontaneous breaking of the symmetry takes place also in a number of
models (magnetization in Ising model).

What is unique in QCD is the absence of the fundamental particles -
quarks - in the spectrum of the theory.

It was conjectured (by whom?) that there is a permanent confinement of
quarks, so that these elementary particles cannot be observed in

principle.

Confinement is a distinguished feature of QCD: nothing similar we can
find in any other physical theory.



Confinement and triality

QCD Lagrangian is invariant under global center transformations. The
center elements commute with all other group elements and can be

written for SU(N) group as

Z = exp
[
2πik

N

]
I , k = 0,1, ..., N − 1 .

The gauge fields are identically invariant and quark fields in the
fundamental representation transform nontrivially as

Ψ′,f = Z∗ Ψf
, Ψ′,f = Z Ψf .

If the quark field is taken in a representation trivial on the center subgroup
then it is invariant under the center transformation. Accordingly to these

transformation rules a quantum number N -ality (triality for QCD) is
assigned to gauge and quark fields. Gauge fields have N -ality zero,

quarks carry a unit of N -ality charge and antiquarks have N -ality (-1).
N -ality is a multiplicative quantum number, i.e. it is defined up to modulo
N (in QCD N = 0 is equivalent to N = 3,6, ...). All experimentally
observed particles have vanishing N -ality. Mesons are composed by

quark-antiquark pair, thus N -ality is zero. Baryons consist of N quarks or
N antiquarks. Hence, their N -ality equals ±N which is equivalent to zero.

In U(1) gauge theory the center coincides with U(1) group.



The confinement problem can now be formulated as follows:

starting from nonperturbative regularization of QCD construct a proof that
all physical states, predicted by QCD, have vanishing triality.

In other words, one has to prove that all asymptotic states with
nonvanishing triality cannot exist.

The next question is how to translate this physically obvious question to a
mathematical question expressed in terms of quantities natural for QCD.
This is rather nontrivial question since QCD Lagrangian is not written in
terms of mesons and baryons but in terms of fields which carry colour
charge. The answer to this question is well known for the pure gauge

models.



Wilson loop and qq̄ (meson) potential

Wilson loop describes creation of static (very heavy) quark–anti-quark
pair at time T1 separated by distance R, propagation of the pair in time

direction and its annihilation at time T2. Examples are:
3.3 Wilson and Polyakov loops 55

x
y

t
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y

t

Fig. 3.3. Examples for a planar (left-hand side plot) and a nonplanar (right-hand
side) Wilson loop. The horizontal direction is time

3.3.2 Temporal gauge

Before we can discuss the physical interpretation of the Wilson loop we must
discuss a peculiarity of gauge theories. If one wants to evaluate the canonical
momentum (1.45) for the gauge field action (2.17) one finds that for the
temporal component A4 the canonical momentum vanishes. The reason is
that the field strength tensor Fμν(x) = −i[Dμ(x), Dν(x)] does not contain
derivatives of A4 with respect to time. A possible way out of this problem is
to use a gauge where

A4(x) = 0 , (3.51)

i.e., the aforementioned temporal gauge. We remark that simply stating (3.51)
does not by far do justice to the subtleties involved in the quantization of gauge
theories, and we refer the reader to field theory books such as [6–8] on this
issue. On the lattice, temporal gauge corresponds to the condition (3.36).

We stress that in the following we use the temporal gauge only to find
the physical interpretation of the Wilson loop. For the actual computation
of the expectation value we do not need to fix the gauge. The result for the
expectation value of the Wilson loop is of course the same whether we fix the
gauge or not.

3.3.3 Physical interpretation of the Wilson loop

In the temporal gauge (3.36), discussed in the last paragraph, the temporal
transporters become trivial,

T (n, nt) =

nt−1∏

j=0

U4(n, j) = 1 , (3.52)

and we obtain the following chain of identities

〈WL〉 = 〈WL〉temp =
〈
tr

[
S(m,n, nt)S(m,n, 0)†]〉

temp
, (3.53)

where in the first step we have used the fact that the expectation value of a
gauge-invariant observable remains unchanged when fixing the gauge. In the

Planar (left) and simplest non-planar (right) Wilson loops.

Expectation value of the Wilson loops is directly related to the potential
between quark–anti-quark pair (meson potential) or to potential between

three quarks (baryon potential).



Confinement, Wilson loop and string tension

W (C) = 〈 Tr
∏

l∈C

Ul 〉 ∼ exp(−Fqq̄) ,

Fqq̄ - free energy of a quark–anti-quark pair.

Confinement: Prove that 1) the string tension between static
quark–anti-quark pair

σqq̄(β) = − lim
S(C)→∞

1

S(C)
ln W (C) .

is non-vanishing at all values of the bare coupling β and 2) continuum limit
of σ exists. S(C) - area enclosed by the loop C. Equivalently: prove area

law decay of the Wilson loop.

For a restangular loop S = RT , the potential between quark–anti-quark
pair is

Vqq̄ = − lim
T→∞

1

T
ln W (C) = σqq̄ R .

If W (C) obeys area law decay, the potential grows linearly with distance
R. Therefore: Anti-quark cannot be removed to infinity and state with

non-zero triality (quark) does not exist (its free energy is infinite).



The baryonic Wilson loop (book observable) is used to calculate qqq
potential.



3q (baryon) potential: ∆ law

3q potential is calculated from baryonic Wilson loop (aslo called book
observable). Two different laws are possible.

∆ law: 3q potential is a sum of two-body linear potentials between each
pair:

V∆ = σqqq ∆ , ∆ =
1

2

∑

i<j

|xi − xj| .



3q (baryon) potential: Y law

VY = σqqq Y , Y = minx0

3∑

i=1

|xi − x0| ,

Y law: 3q potentail is a genuine three-body potential, where x0 is the
Fermat-Torricelli point.

In all cases it is found that σqq̄ = σqqq.

Strong coupling expansion and most recent Monte-Carlo simulations
support Y law but the issue is still under debates.



String tension behaviour

Abelian models, d > 2

Three-dimensional model confines (electric) charges in all representations
and at all values of the coupling constant (permanent confinement)

Wj(C) = 〈 eijφ(C) 〉 ∼ exp(−σj(β) S(C)) .

At small and intermediate distances the Casimir scaling dominates

σj(β) ∼ j2 σ1(β) .

Exact lower bound on σ1(β) is known. At large distances sandwitch type
diagrammes give leading contribution

σj(β) ∼ j σ1(β) .

Four-dimensional model confines charges at strong couplings. Here the
string tension behaves like in 3d theory. At β ≈ 1 phase transition takes
place. Above critical point Wilson loop has perimeter decay and electric

charges are free.



Non-Abelian models, d > 2

On every link belonging to the loop C one encounters integral of the type
∫
dU Uj

∏

p∈l
Ur(p)

Non-vanishing result arises only if the product of matrix elements in the
integrand contains trivial representation. This simple rule leads to

appearing four different types of diagrammes: Casimir diagram, sandwich
diagram, N -ality diagram and perimeter one (plus corrections).

• Fundamental string tension is known to at least 14th order in β

• The strong coupling behaviour described below agrees with Monte-
Carlo simulations in the scaling region



1. Wilson loops non-trivial on the center at small and intermediate dis-
tances obeys area law. Leading diagram is of Casimir type:

σj(β) ∼ C2(N ; {j}) .

2. Wilson loops non-trivial on the center at large distances obeys area
law. Leading diagram is of N -ality type. It means the string tension
does not depend on representation and equals the fundamental string
tension

σj(β) ∼ σf(β) .

3. Wilson loops trivial on the center at small and intermediate distances
obeys area law. Leading diagram is of Casimir type.

4. Wilson loops trivial on the center at large distances obeys perimeter
law, i.e. the corresponding charges are not confined and can be sep-
arated.



(a) is N -ality diagram exhibiting independence of the asymptotic string
tension of the quark representation if it is non-trivial on the center. Area
enclosed by the loop C taken in a representation {j} is covered once by
plaquettes from the action in the fundamental representation. The rest is

compensated by the perimeter contribution.

(b) describes perimeter law (absence of confinement) for representations
trivial on the center.



Mechanism of quark confinement

• What are gauge field configurations which provide area law decay of
the fundamental Wilson loop? More generally: which are responsible
for expected behaviour of Wilson loops in all representations and on
all scales?

• What is physics of confinement?

• What is continuum limit of such configurations, if any? Do they have
any relevance for experiment?



• Confinement in two-dimensional theories

• Confinement in U(1) gauge theory and monopoles

• Confinement in Z(N) gauge theory and vortices

• Monopole and vortex mechanisms in non-abelian models



VII. Summary

QCD explains, though not rigorously, the most important features of the
strong interactions. It explains the mass of the visible matter in the

Universe. A number of open questions remains, the most important are:

• Mechanism of confinement and mass gap generation

• ∆ vs Y law; Confinement in theories with matter fields

• Relation between confinement and chiral symmetry breaking

• How to compute effective baryon-meson theory from first principles

• When we solve all these problems?

Analytically, NEVER
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