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Outline of the talk

o Stable and unstable particles in the Standard model

@ Magnetic and electric dipole moments: classical electrodynamics, quantum
mechanics: Schrodinger and Dirac equations

@ Spin magnetic dipole moment: problem “g-2" for electron, muon, quarks

o Electric dipole moment (EDM): violation of T- and CP-invariance. Baryon
asymmetry in the Universe

@ Magnetic dipole moment (MDM) of charmed baryons
@ Spin precession in external magnetic and electric fields

o Feasibility of measuring MDM and EDM of short-lived particles using bent
crystals

@ Proposals for experiments at CERN
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Stable and unstable particles

(]

Stable particles: proton p(uud) (antiproton p(a@id)),

electron e~ (positron e*), photon,

Almost stable: neutron n(udd) (antineutron fA(idd), lifetime 7 ~ 15 min,
Unstable particles: muon p~ (antimuon u*), lifetime 7 = 2.2 x 107° s,
tau lepton 7~ (antitau 7), lifetime 7 =2.9 x 10713 s

Light “strange” baryons (and antibaryons): A(uds), lifetime 7 = 2.6 x 10710
S,

¥ *(uus), lifetime 7 = 0.8 x 10719 s, etc,,

Heavy “charmed” baryons: A} (udc), lifetime 7 =2 x 10713 s,
“strange-charmed” baryons =} (usc), lifetime 7 = 4.4 x 10713 5, etc. ,
“Bottom” baryons: A%(udb), lifetime 7 = 1.47 x 10712 5, etc.,

Baryons resonances (decaying due to the strong interaction): e.g., A,
lifetime 7 ~ 10723 s, and many others.
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Electric and magnetic dipole moments in classical

electrodynamics

L. Landau, E. Lifshitz, “Field Theory”, J.D. Jackson “Classical electrodynamics”,
1999

Electric dipole moment (EDM) of a system of particles.
N

= €, Q Jﬁ D,-jn,-nj
R) = g — ~ - — ——
d)( ) po IR— F‘;| R R2 + 2R3 +

where 7= R/R, Q= > €, - total electric charge, and R >> || for all a.
d = Zeara = /rp r) d*r — dipole moment,

D

Z e,(3xix) — r257) = /(3xixj — r?6M)p(7) d®r — quadrupole moment

I s (¢ =7

- >~
Monopole Dipole Quadrupole Oc!opole
V~1n (V~1/rH V~1r% (V~ 114
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System in external electric field

Now put the system in external field with the potential ¢(7)ex::

. s 1 .

U= Z ea¢(ra)ext ~ Q¢(0)ext - dEext + gqulEéxt + -
a
There is also a torque (“Bpawatownii momeHT") which acts on the system
KZZ@XéZZﬁXEaEeHZJXEext
a a

Therefore we see that the potential energy of the dipole and the torque are related

1o}

— U,

da

so that at the angle a = 0 the torque vanishes and the potential energy takes minimal
value —E.:d. This means that the electric dipole tends to be directed along the electric
field Eo..

U= —dEe: = —d Eeq cos a, |K| = d Eeesina =
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Magnetic dipole moment (MDM)

For a system of charges moving in the finite region of space one has vector potential

e 1 ea‘Z‘a
A= ~ - +(’)

with MDM of the system

:2 Zea raXva)—sz c L

where L, = 7, x Pa is the orbital moment of particle a.
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Magnetic dipole in external magnetic field

Suppose we put the system in external constant magnetic field Bext. Vector potential is
- 1 -
A(F)ext = E(Bext X F)

The potential energy of the system in external magnetic field is

1 o= L=
U= _E Xa: €aVa A(ra)ext = —K Bext

The force acting on the system F = —6(—/1’3;4) = 0, however the torque (“Bpawatowynii
momeHT”) is not zero

= o = _ €a = o =
K:Zra X Fa :Zra X ?(va X Bext) = i X Bext
a a
We see that, like for the electric dipole, we have

U = —p Bext cos 3, K = uBextsin 8

and the potential energy is minimal if 3 = 0, then K = 0 (no torque) and magnetic moment
tends to be directed along the magnetic field, [ || Bext-
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Magnetic moments in quantum physics

First consider non-relativistic quantum mechanics based on Schrodinger equation.

E. Schrodinger
Hamiltonian of a particle in external electromagnetic field A* = (¢, A) is

1

Y P € A5 ihOA ’

e

A?
2m 2mc?

If we have only constant magnetic field B, then ¢ = 0 and A(F) = %(é X F). Then
VA =0 and

P = 2
H=—-iB+0O

o~ AB+O(e)
- = o0
p‘_zm(rxp)_2mL7

where L is operator of orbital moment. Like in classical electrodynamics, MDM is
determined by mechanical moment (orbital moment).
However the spin MDM does not appear in non-relativistic description.
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Magnetic moments in quantum physics: Dirac equation

Unification of special relativity and quantum mechanics

A. Einstein P.A.M. Dirac

The famous Dirac equation (linear in derivatives) for spin-1/2 fermion in external
electromagnetic field A* = (A%, A)

i2y = [ca(p-

-* 2 0
py A) + Bmc” + eA” |,

alo

for the 4-component spinor ¥ = < i ) and B and @ are 4 x 4 Dirac matrices.
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Magnetic moments in quantum physics: spin and

For non-relativistic velocities we need to reduce the Dirac eg-n to equation for the Pauli
equation for the 2-component spinor ¢ (¢ > x):

.0 o e 0 eh =
’a‘ﬁ— (p c ) +eA 2m B

The important feature is appearance of MDM related to the spin S=1lg
- e gz

Mspin = 2 % S,
Now we add orbital MDM and spin MDM and obtain
,L_’: - ,Eorb + ﬁspin - 5

It is seen that the spin MDM enters with factor 2 compared to the orbital MDM.
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Spin dipole moment

The spin MDM is intrinsic characteristic of a particle, like other particle properties, such
as: mass, electric charge, lifetime, etc. We can write the spin MDM in the form
e = eh

5 g

=2 —27, with g = 2,

H = Hspin = g2mc 2 2mc

and g is called g-factor, or gyromagnetic factor of a particle.
Introduce the Bohr magneton
which is for electron mass is equal to

le|h —-20 €rg
= ~0.927-1
ts 2mec 0-9 0 Gauss

What absolute value of MDM is measured? We take matrix element of the operator ji
between the Pauli spinors for spin projection +1/2 (on OZ axis) and obtain:

H_c8
pe el 2
For electron e < 0. We see that for a point-like electron g-factor is equal to 2. Is this

true always?
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Electron g-factor: history

1948: Precise Measurement and Calculation

Kusch and Foley measure g, 4
g, =2.00238 +/- 0.00006 -

Experiment (1948): Polykarp Kusch, H.M. Foley

1947 : QED

ge~2(1+ &) ~2.00232

...and Feynman and
Tomonaga ...

Theory: Julian Schwinger (1948, 1949)
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Electron g-factor: experiment vs. theory for u/ug = g/2

December 2013  Physics Today M
% o)

ppt = 107"
from measured 0 1 2 3 4 5 6 7 B8 9 10 11 12
fine structure constant Rb 2011, QED 2013 (calculated)
\ .- Harvard 2008
X — Harvard 2006
Predicted: p/uy; =-1.001159 652 18178 (77) uw 1987

Measured: ji/p1y =—1.001 159 652 180 73 (28) 180 182 184 186 188 190 192
(/2 - 1.001 159 652 000)/107"2

Is theory in agreement with experiment?
Take difference of central values and compare with total error (standard deviation o)

A = i/ us(exp) — u/ps(theory) = (178 — 73) x 107 = 105 x 10~ ™,
0= 1/02 0, + 03 = VT2 +282 x 10 ¥ =82 x 107

We see that A = 1.28 o which means that agreement for electron is indeed-very good!
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Muon g-factor: history

Muon is unstable (7 ~ 2 x 107® s) and decays via

u+—>e++l7u+z/e

> Muon Decay
3, Positron “spin
W analyses” muon

+

o e
;?' [ — -
e

.

w

Neutrines have negative helicity, antineutrinos positive
An ultrarelativistic pesitron behaves like an antineutrine,
Thus the positron tends to be emitted along the muon spin

when v_and Vu go off together (highest enengy ¢*).

Applied
Maagnetic
Field
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Muon g-factor: history

Garwin, Lederman, Weinrich 2.00+/-0.10 £hys Rev 105, 1415 (Jan 57

Counts per Channel ]

psec 1 Proc. Phys. Soc. A 7

Figure 2. Time distribution of forward electrons from positive muons stopped in copper
(87%) and carben (13%). The magnetic field was 1019 gauss. The exponental
decay factor has been removed, and the first few points have been corrected for a
shght non-linearity in the time analyser. Note the displaced zero

Experiments with a Polarized Muon Beam

By J. M. CASSELS, T, W. O'"KEEFFE, M. RIGBY, A, M. WETHERELL
AxD J. R, WORMALD

Sl Prpcs Researts L aborsors, Dty of Livepon g=2.004 + 0.014 (0.6%)

In 1959 CERN launched the g-2 experiment aimed at measuring the anomalous
magnetic moment of the muon. The measures were studied using @ magnet 83cm x
52cm x 10cm borrowed from the University of Liverpool.

In 1962 this precision had been whittled down to just 0.4%.
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Muon g — 2 measurements

Precision [ppm]

Lpool

10%¢

10

107

103}

102;

“l CERN-| Q. = (g — 2)
2 U 2
W GERN! Measuring deviations from
3 . Pure Dirac prediction
? %I‘EHN-III
Fon
L * FNAL

o b b P by e b e
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Muon MDM: theory

a.S‘M — aQE‘D 4 aWeak 4 aHadromc

T. Aoyama, M. Hayakawa,
T. Kinoshita, M. Nio (PRLs, 2012)

Theory: 12,672 Feynman Diagrams

2.00231930436356 1 0.00000000000154

#% 0 00 5@ 5O
B 0 O D o
33333
PNl
Soaes

A. Korchin
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Vacuum
Polarization

LO + NLO ..

~ 60% total SM
uncertainty

Light by
Light

~ 40% total SM
uncertainty
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Muon g-factor: experiment vs. theory for (g/2 — 1) x 101°

2011 2017 *to be discussed

QED 11658471.81 (0.02) 11658471.90 (0.01) s e et 209 oy miscsy
EW 15.40 (0.20) — 15.36 (0.10) (s e 058 (201 oszcs]
LO HLbL 10.50 (2.60) — 9.80 (2.60) (eps wes cort. 15 (2016) 01016 %
NLO HLbL 0.30 (0.20) s e 5735 020 397

HLMNTI11 KNT17
LO HVP 604.01 (4.27) —» 602.23 (2.54) this work*
NLO HVP -9.84 (0.07) — -9.83 (0.04) this work*
NNLO HVP 1.24 (0.01) e vew 71 aoney o) *
Theory total 11659182.80 (4.94) — 11659181.00 (3.62) this work
Experiment 11659209.10 (6.33) world avg
Exp - Theory 26.1 (8.0) — 28.1 (7.3) this work
Aay 330 — 3.9¢ this work

To compare theory and experiment calculate
A = i/ us(exp) — pu/ps(theory) ~ 28.1 x 107°,

0= 1/02 e, + 03 = /3622 4+ 6332 x 10 ° =7.3x10"°

We see that A = 3.9 0 which means a big disagreement!
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Muon MDM: models of physics beyond Standard model

* lightZ’ canevade many searches involving electrons by non-standard couplings preferring
heavy leptons (but see BaBar’s direct search limits in a wide mass range, PRD 94 (2016)
011102), or invoke flavour off-diagonal 7’ to evade constraints [Altmannshofer et al,, PLB 762
(2016) 389]

c @5 D
1
1 ! !
a5

-4
* axion-like particle (ALP), contributing like m®in HLbL [Marciano et al., PRD 94 (2016)
115033]

* ‘dark photon’ - like fifth force particle [Feng et al, PRL 117 (2016) 071803]
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MDM of a separate quark

Because of the quark confinement one cannot measure MDM of the free quark, only
for quarks inside baryons or mesons.

In general, for a quark

le] Q4P &q

2mgc 2

&q - gyromagnetic factor, Qq = +2/3 for quarks u, ¢, t and Qq = —1/3 for quarks
d,s, b.

For a point-like Dirac quark g = 2, however there are radiative corrections like for
electron or muon, but with coupling constant as. For example, for the charm quark
as(me) = 0.3378 > aem ~ 0.0073.

Hq =

+ higher orders in as.

For the charm quark [Grozin et al., 2008] radiative corrections up to 3 loops are

% — 1 =0.03585 -+ 0.04 + 0.05685 + O(a?(m,)) = 0.1327

However, this result is not reliable since there is no convergence in «s expansion.
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Electric dipole moment (EDM) of elementary particles

EDM is even more interesting and intriguing characteristic of particles.

i~S, ~ d~S§
But the polar vector d and axial vector of spin S have opposite properties with respect
to space—reflectlon P and tlme-lnver5|on T operations. This means that EDM is not zero
only if P is violated and T is violated [L. Landau, 1957].

P is violated in weak interactions — this is not a surprise. But if Tis violated, then due
to the famous CPT theorem [W. Pauli, G. Luders, 1954], CP symmetry should be also
violated!

7  system under P and T is not symmetric

3 with respect to the initial system,
ase P ¢
d
h
~_% d?
T +h Having CPT symmetry, the
=

= combined symmetry CPis
¢u violated as well.
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Electric dipole moment (EDM) of particles

ii is axial vector like magnetic field B, and Hamiltonian is symmetric under Pand T.
Interaction of d with electric field E violates both P and T:

Magnetic dipole nis a dimensionless Electric dipole
moment constant, analogous moment
L Qe P s Qe
iz 2 p =()§m o’
Hamiltonian for a
fermion in B and E Transformation
field Properties
~ - — - = E’ ﬁ I_I a’
H=—-ji-B—d-FE c
P + - + +
T - - -
If CPT valid & EDM would violate
CP cP - - -
CPT  + + +
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Electric dipole moment and CP violation

Why is CP symmetry violation so important? Because it is related to the problem of
matter-antimatter asymmetry in the Universe.

“CP Symmetry Violation, C-Asymmetry, and Baryon Asymmetry of the
Universe” e". Journal of Experimental and Theoretical Physics. 5: 24—
27.1967

Criteria of Sakharov:
1. Violation of CP symmetry. In fact, it is violated in the Standard model via CKM
matrix, but the effect is too small — many orders of magnitude below what is needed.
2. Nonconservation of baryon number and leptonic numbers.
3. Time period in evolution when the Universe was out of equilibrium.
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EDM of leptons and quarks

For leptons and quarks one can define EDM

le|Q 7
d=———=
2m 2
where 7 is analogue of g-factor for MDM.
What is known at present? There are no direct measurements of EDM. Theoretically, d
for leptons is not zero but extremely small (4-loop diagrams in Standard Model). It
scales with mass, i.e.

dp ~ do I
| dexp, |e] - cm | diheory, |€] - cm
electron <09x10 % ~10°3®
muon (-0.140.9) x 107*° ~2x107%
7 lepton (—0.22 — 0.45) x 107® | ~ 3.5 x 107
neutron <3x1072° (1 -6)x 10732
charm quark | not known <44 x107Y

Note that factor 7 for the charm quark is not too small, namely 7. < 1.8 x 1072,
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Composite particles and quark model

Baryons (spin =1/2,3/2,...):

p = uud, n = udd, St =uus, Y°=uds ...
Yt =ude, XTIt =uwue, =f=usc, Z2=dsc ...
=t =dcc, =t =uce, Qf =scc

Total wave function in the quark constituent model is
V= 1/1flavor X 'l/)spin X stpace X 1/)color
All baryons have the color wave function (singlet under SU(3)coior)

1 aBy 1
color = —= € o = — q— g4+ ...
Yol 7 9aqsqy \/g(qq qq )

For the proton and neutron, e.g., the spin-flavor wave functions ¥aver X Pspin are

1
Ip;i 3, +3) = %(2%1&0& — uruydy — upurdy),

1
Ini 3,+3) = %(2deT“i — drdyur — dydruy),
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MDM of long-lived baryons with 7 ~ 10719 s

eh

If we introduce nuclear magneton uy = 5 then for the long-lived baryons it is
p
convenient to write MDM in units of uy, i.e. MLN = £. Then one obtains

Magnetic Moments of Baryons

Baryon /i (Experiment) Quark model: /N
p +2.792 847 386 £ 0.000 000 063 (g = pa)/3
It —1.91304275 = 0.000 000 45 (44pa — p0)/3
A —0.613 +0.004 fs
ot +2.458 +0.010 (40 — p1s)/3 +2.67
bl (2 + 2jta — 41)/3 +0.79
2 A —161 +0.08 (a = )/ V3 —1.63
£ ~1.160 +0.025 (4pa — pis)/3 —1.09
=0 —1.250 £0.014 (4ps — pu)/3 —1.43
= —0.650 7 £0.0025 (44 — pa)/3 —0.49
Q —2.02 +0.05 kI —1.84
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Charmed baryons

Charmed baryons include at least one charm quark ¢ with electric charge 2/3 |e| and
mass me = 1.27 — 1.7 GeV.

Baryon | Flavor | SU(3)f | Charm Mass (MeV) Cross section, ub Life-length cT,
content fixed tar.  collider or width I

AE [ud]c 3 1 2286.5 + 0.1 10.13 758.1 60.0 £ 1.2 um
= [us]c 3 1 2467.940.2 0.588 65.5 132.5 £ 7.8 um
=0 [ds]c 3 1 2470.94+0.3 0.510 65.6 33.6 £3.6 um
Tt uuc 6 1 2454.0 £ 0.1 0.863 42.0 1.9+ 0.1 MeV
T {ud}c 6 1 2452.9 + 0.4 0.697 42.2 < 4.6 MeV
0 ddc 6 1 2453.8 0.1 0.461 41.6 1.8 £ 0.1 MeV
=+ {us}c 6 1 2578.4 + 0.5 0.083 6.3 -
=0 {ds}c 6 1 2579.24+ 0.5 0.072 6.6 -
Q0 ssc 6 1 2695.2 + 1.7 0.028 3.0 80.3 + 10 um
=%t ccu 3 2 3621.4+08 | <107* ~1073 | 76.7+10um
=% ced 3 2 3518.9+09 | <107% <1073 -
Q. ccs 3 2 - <107 ~1073 -

We would like to study baryons which decay due to weak interaction with lifetime ~ 10~13 s, or

cT ~ 100 pm.
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Charmed baryons: wave function and magnetic moment

As examples of the wave function of charmed baryons,

1
NG5, +3) = slurdier —uydrer — druyer + dyurey),

or
1
=85, +3) = 2\/5(2U¢d¢6¢ +2dyurcy — urdycr — druycr — updrey — dyurcr)

How to find MDM (or EDM) of the charm baryons?
We take matrix element between wave function of the MDM operator:
w=(B; %7 +%|(/~L1012 + p202; + pz03;)|B; %7 +%>

where p; = le ‘n?_ch & is the magnetic moment of a quark (i = 1,2,3).
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Magnetic moments of charmed baryons

In this way one obtains MDM of all charmed baryons
HAE = P=f = 1=2 = fe;
1 1 1
Pyt = §(4uu — M)y My = 5(2uu +2pd — fic),  pxo = 5(4ud — fic),
1
pz+ = §(2uu + 2us — pe), etc. for all

We observe, that MDM (and similarly for EDM) of some baryons are equal to the
MDM (and EDM) of the charm quark:

Hay = He
d/\zr — dC

which allows one to obtain information of the MDM and EDM of the charm
quark.
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Precession of spin in external magnetic and electric fields

How to measure MDM/EDM of particles which live so short time 7 ~ 2 x 1073 57

We need to accelerate it to increase its lifetime and distance it passes, L = vy v 7, where
v =(1-v?/c®)"Y2 = E/m is Lorentz factor.

For the LHC, the energy E ~ afew TeV, then v ~ ¢, v~ 10% and the length is
macroscopic, L ~ 10 cm.

Then one can use phenomenon of spin precession in external fields.
In the rest frame of particle the vector of spin satisfies eq-n

95 _ G Bt dx E
dr

where B* and E* are the magnetlc and electric fields in the rest frame and 7 is the
proper time (“cobcTeernoe Bpemsi”). Of course, [ ~ Sandd ~S.

For example, if E* =0 and B* #+ 0, then the spin rotates around the magnetic field with
the angular velocity

W=

eB* g eB* g
mc 2 T mc 2
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Precession of spin in external fields

We need description of spin precession in external static fields for a ultrarelativistic fermion.
@ L.H. Thomas, Nature 117, 514 (1926)
@ V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2, 435 (1959)

@ V.B. Beresteckii, E.M. Lifshitz, L.P. Pitaevskii, “Quantum electrodynamics”, sec. 41,
Pergamon Press, 1982

@ J.D. Jackson, “Classical electrodynamics”, sec. 11.11, John Wiley, 3rd ed., 1999
@ V. Lyuboshits, Yad. Fiz. 31 (1980) 986; |. Kim, Nucl. Phys. B229 (1983) 251.
@ V.G. Baryshevsky, Phys. Lett. B757 (2016) 426.

One can write equation in Laboratory frame, where the particle moves, by transforming the
fields and time t to the Lab frame:

vV X
B* =~(B — - ,
7( " ) 11, &
- VxB 2 V(VE)
E* =~(E -
Y(E + " ) 11,

and dt = vyd7. Then the precession equation in the Lab reads

dS  dS
= —0 | rest

dS 72 Sx(Vx3)
dt ~ dt

1+ c?

where the 2nd term is the so-called Thomas correction related to noninertial frame-of particle.
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Precession of spin in external fields

Acceleration of particle is

v _ g E+\7><§_\7’(\7E)
dt  my c c?
1  V(VE
—gox vt L2 B
myy2—-1 ¢2

- q 72 \7><E_§
wo_mc'y 2—-1 ¢

and &g is angular velocity of rotation of velocity (or trajectory) of a particle.
The final equations for the spin precession are

1\ = v (BV
e—_ T |(8 1.1 B_(g_l)iw ,
mc 2 ¥ 2 1+ 2
- q (g v )Exv
Wg=——1{2—
mc \ 2 1+~ c
. ng |= VxB  ~y V(VE)
=——"1 |E _
WEDM 2mc|: c 1+~ c2
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Spin precession in electric field of a bent crystal

In crystal there is only electric field, such that E L V. Then the energy of particle is
conserved, so it moves with constant velocity.
Choose the components of electric field and velocity:

—

E = (E7 07 0)7 ‘7: (0’ 07 V)’

then momentum of particle rotates with angular velocity

. E v
Wo = (07 —wo, 0)7 wo = IZ’YV = ﬁv
where R is the curvature of a crystal.
Then we find the spin rotation velocity due to MDM
~ 1
@mom = (0, wvpm, 0), WMDM = ’)’wo(% —-1- 2g7 + 5)
and due to EDM g
@epm = (wepm, 0, 0), WEDM = Ywo 7 -

So that § = (wepm, —wmpm, 0) is in some direction in OXY plane.
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Precession of spin in electric field of the bent crystal

Integration leads to relations for the angle of rotation of polarization

¢ = (¢, —90,0),
1 nv

+_)a 9/:790_a (1)

_ _ &
6 =60 (x 292y 2¢

where 6y = ﬁ, L is the arc length that baryon passes in the channeling regime

and k = § — 1 is anomalous magnetic moment.
The polarization vector rotates around the unit vector 7 by the angle ¢
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What is typical rotation angle 8y of the particle with velocity v ~ ¢?
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Rotation of spin in electric field of bent crystal

After particle passing the crystal the polarization vector acquires the components which
depend on initial polarization and rotation angles 6 and 6.
If crystal is oriented perpendicular to initial polarization and §’ < 0, then

Pin=P(1,0,0) = P, ~ P (cos, 0, sinb)

which can be used to find 6 ~ xk (MDM of the particle).
If crystal is rotated then component QY of polarization appears

/ !
Pa=P'(0,1,0) — PimnP (%(cos@ 1)1 %sin@)

which can be convenient for measurement of 6’ ~ 7 (EDM).
For example, if particle rotates by the angle 6y ~ 0.6°, v ~ 103, and x ~ 0.01, then

0%7(%—1)Go~1o3x0.6°xo.oma"

Even small deviation of g-factor from 2 will be enhanced by the big Lorentz factor. If we
measure 0 and know 0o, then g-factor can be found.
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Our proposal

Any direct measurement of MDM/EDM of short-lived charmed baryons,
beauty baryons, 7 lepton would be the first one.

Collaboration: Orsay (LAL and Paris-Sud University) & Kharkiv (KIPT and V.N.
Karazin University) & Kyiv (Taras Shevchenko University) & CERN & Rome
(INFN)
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Schematically rotation of polarization in a bent crystal

rotation axis

The gradient of the inter-plane electric field of a silicon crystal reaches the maximum
value about 5 GeV/cm. This corresponds to the induced magnetic field in the
instantaneous rest frame of a particle B* = (£ x E) ~ 10° Tesla, if the particle moves
with relativistic energies ~ TeV.

With Lorentz factor v ~ 10® the particle can move about ~ 10 cm in the crystal before
decaying to observed particles.
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Fermilab experiment with ¥ (lifetime ~ 1071% s) in 1992

I E761 Collaboration. Measurement of the £+ magnetic moment - 1 I

VOLUME 69, NUMBER 23 PHYSICAL REVIEW LETTERS 7 DECEMBER 1992
First Observation of M tic M t Pr ion of Ch led Particles in Bent Crystals
a " . Proton (800GeV/c) + Cu = L* n particles
sgeclmmgm Spmm
II CrymlsI In” DE > pne
GV ';:‘K;‘g’“ As illustrated in Fig. 1, a vertically polarized £* beam
? ) Loz [14] was produced by directing the Fermilab Proton

L
Om 3m Som Sm Center extracted 800-GeV/c proton beam onto a Cu tar-
get (T). The resulting £+ were produced alternately at a
+3.7- or —3.7-mrad horizontal targeting angle relative to
the incident proton beam direction. This allowed the po-

P A . . . . TS
IB‘"“ | O g e oo Iaflutmn direction to be periodically reversed. The mean
| Upmend T ST - The two bending erystals. Each crystal precess the
Crysual

channelled particle’s spin in opposite direction

[

-z \f\
The deflection of the channeled particles was measured

to be w=1649+0.043 and —1.649+0.030 mrad for
the up- and down-bending crystals, respectively. For
375-GeV/c £* this corresponds to an effective magnetic
field of B, =45 T in the crystals. The magnetic moment
[6] of the Z* should precess by ¢ == | rad in such a field.
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Concept of experiment at CERN
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Feasibility of measuring the magnetic dipole moments
of the charm baryons at the LHC using bent crystals

A.S. Fomin,**¢ A.Yu. Korchin,’ A. Stocchi,® O.A. Bezshyyko,” L. Burmistrov,”
S.P. Fomin," V. Kirillin,"* L. Massacrier,” A. Natochii,”¢ P. Robbe,"
W. Scandale®/-¢ and N.F. Shul'ga"c

Beam core ——
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150 prad Crystal 2
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The proposed experiment at CERN (slide of A. Stocchi)

IThe Er‘oeosed exeer'imem in LHC I

Studies mainly done looking at installing the double crystal system
downstream to LHCb detector

L=10 cm, #,=15 mrad
datectoyion]
b A
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Measurement polarization of Al (slide of A. Stocchi)

IPoIarisation (P) of Ac and weak asymmetry decay parameter (o) I
2 (Ac)
The polarisation ? of Ac has not been yet measured precisely. P (Ac)~ 06
There are some old experiment and the indicative values are To be ?lSO me.asured
P(A) ~[0.4-0.6] (P(A,)=0.6 (e.g. Bis-2) by this experiment
0} The parameter a. is decay dependent
channel Br [+
(A, An) X Br{A>pm) 1,07% x 64 % ~ 0,007 ~1 0.59 inout o N
(A, >AT) XBr{A>n7?)  1,07%x358%~0004 ~0.6 059 INpUt parameter
(AﬁZ*n") X Br(Z*>pn°) 1,00% x51,5% ~ 0,005 ~0.7 0.44
(A, =>Z*n%) X Br(Z*>n7+) 1,00% x 48,3 % ~ 0,005 ~ 0.6 ~0 For the numerical study
(!\C—) Aev) XBr(A>pn) 2,00%x64%~0,0128 ~1.8 0.60 we use
(A2 Apv) XBr(A>pn) 2,00%x64%~0,0128 ~18 060 7 (Acko~0.6x0.59~0.35
A2 pKmY) 5,00% ~ 0,05 ~12.5 not known
Two observations :

1) Consider that the sensitivity of the analysis goes as (2 X o)

2) More decay channels can be use. In particular if the o parameter of A, p K'n™

decay mode is measured and happened to be large, it would allow to give access to much

larger statistics. Possible at LHCh ! o
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Feasibility of measurement for 7-lepton
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Feasibhility of 7-lepton electromagnetic dipole
moments measurement using bent crystal at the LHC

A.S. Fomin,™® A.Yu. Korchin,® A. Stocchi,? S. Barsuk? and P. Robbe?

Tau-lepton is a short-lived fermion with lifetime 2.9 x 1073 s.
Its MDM and EDM have never been measured.

How to produce polarized 7?7 One can take charmed-strange meson D;” = (c 3) with
sizable branching rate (5.5%) of decay

D} — W (virtual) = 7" + v,

D mesons are produced at the LHC in pp collisions with very high energies, of a few
TeV, and subsequently decay to 100 % polarized 7 leptons.

A. Korchin Electric and magnetic dipole moments March 3, 2020 43 / 47



Measurement of MDM and EDM for 7-lepton

7 leptons can be directed into a bent crystal, get in the channeling regime, and the
direction of 7 polarization after the spin precession in the crystal can be determined
from the angular analysis of its decay products. Schematically, the whole process is

pp— DX = 7TY =77 inacrystal - 7T w7y

Double-crystal setup is proposed by Alexey Fomin. Optimal parameters: 1st crystal —
silicon (L = 4.5 cm, R = 15 m) or germanium (L = 3 cm, R = 10 m); 2nd crystal —
germanium (L =10 cm, R =7 m).

Crystal 1: Crystal 2:

Ge:L= 3cm R=10m Ge:L=10cm R=7m

Si L=45cm R=15m

;=14 mrad
6p =3 mrad 6y =0.08 mrad
8 = 0.1 mrad Ly=10cm
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Polarization of 7 in the weak decay D — 7" v,

Behavior of polarization vector of 7 is complicated, depending on kinematics.

D7 rest frame Laboratory frame

Y

N

Ny
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What can we expect in future measurements?

Absolute statistical error of the measured anomalous MDM of the 7 lepton

a, = %(gT — 2) as a function of the total number of protons on target (NpoT).

The green lines show the limits obtained by the DELPHI collaboration (yy — 777,
LEP) and expected for the future experiment at BELLE 2, Japan (77 — £~ v, ,7y). The
red line — the Standard model prediction [Eidelman, Passera, 2007].
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NpoT means “number of protons colliding with target”.
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