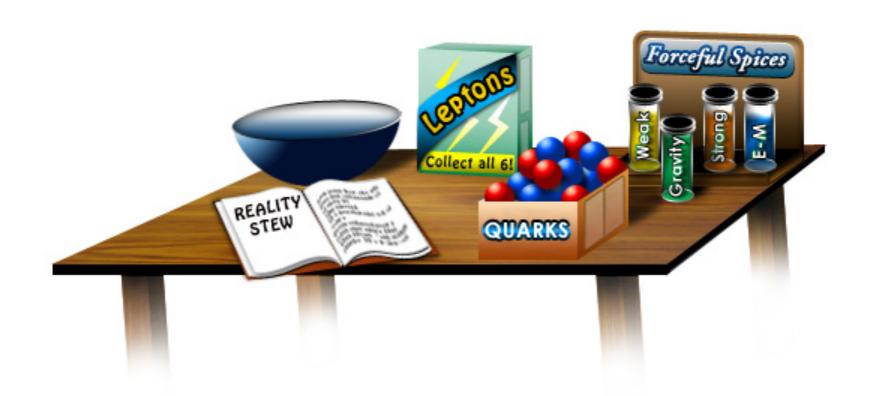
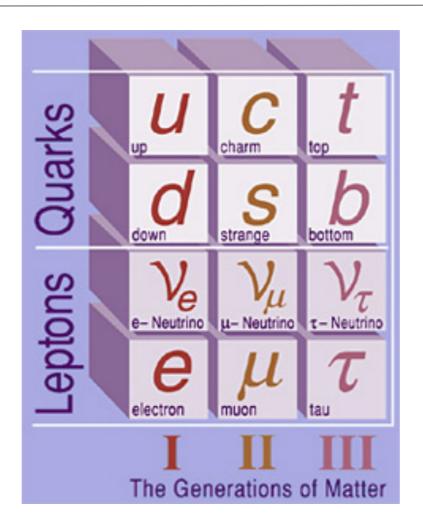
New Physics in Flavor Physics

Damir Becirevic, IJCLab FCU School, Dnipro, March 2020



Flavor Physics

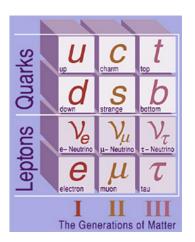


In the Standard Model

X Gauge sector entirely fixed by symmetry

$$i\overline{\psi} \rlap{/}{\rlap{/}{D}} \psi \qquad \qquad D_{\mu} = \partial_{\mu} - ig_s t_a A_{\mu}^a - ig \mathbf{T} \cdot \mathbf{W}_{\mu} - ig' \frac{Y}{2} B_{\mu}$$

- X Flavor sector loose (a bunch of parameters)
- 13 of 19 are fermion masses and q.mixing parameters



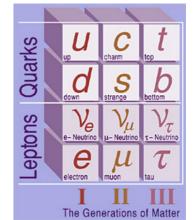
We know

fermions come in 3 generations

$$\left(egin{array}{ccc}
u_e & u \\ e & d' \end{array}
ight) \qquad \left(egin{array}{ccc}
u_\mu & c \\
\mu & s' \end{array}
ight) \qquad \left(egin{array}{ccc}
u_ au & t \\
 au & b' \end{array}
ight) \\ \left\{\left(egin{array}{ccc}
u_e \\
e \end{array}
ight)_L, & (
u_e)_R, & e_R^-
ight\}, & \left\{\left(egin{array}{ccc}
u \\
d' \end{array}
ight)_L, & u_R, & d_R
ight\}$$

- All generations interact equally with gauge bosons
- $m{ imes}$ Neutral currents: $eQ_far{f}\gamma_\mu f\mathcal{A}^\mu, \qquad rac{e}{2s_Wc_W}ar{f}\gamma_\mu (v_f-a_f\gamma_5)f\;Z^\mu$
- X Charged currents:

$$\frac{g}{2\sqrt{2}}\bar{\nu}_{\ell}\gamma_{\mu}(1-\gamma_{5})\ell\ W^{\dagger\mu}, \qquad \frac{g}{2\sqrt{2}}\bar{u}\gamma_{\mu}(1-\gamma_{5})d\ W^{\dagger\mu}$$

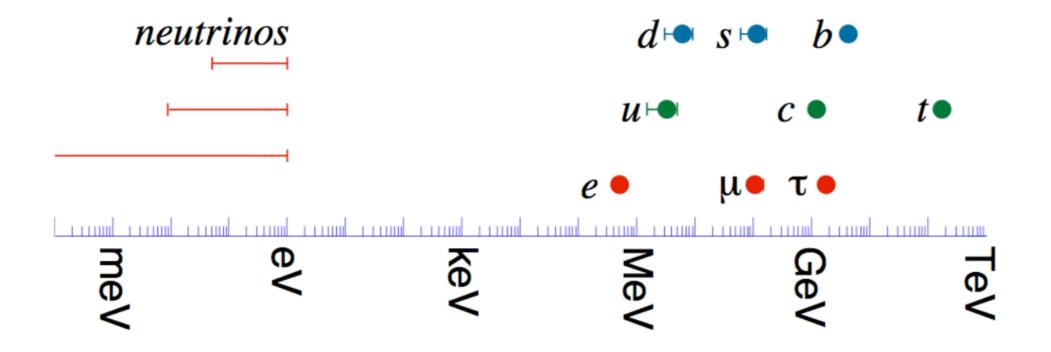


We know

- P and C broken by weak int. but CP is a symmetry (I gen)
- X Going from the gauge to mass basis

$$\mathcal{L}_{Y}^{\mathrm{SM}} = -Y_{d}^{ij} \overline{Q}_{L}^{i} \phi D_{R}^{j} - Y_{u}^{ij} \overline{Q}_{L}^{i} \widetilde{\phi} U_{R}^{j} + \text{h.c.}$$

$$\mathcal{L}_Y^{\mathrm{SM}} = -\left(1 + \frac{h}{v}\right) \left[m_d \bar{d}d + m_u \bar{u}u + m_e \bar{e}e\right]$$



We know

- P and C broken by weak int. but CP is a symmetry (I gen)
- X Going from the gauge to mass basis

$$\mathcal{L}_{Y}^{\mathrm{SM}} = -Y_{d}^{ij} \overline{Q}_{L}^{i} \phi D_{R}^{j} - Y_{u}^{ij} \overline{Q}_{L}^{i} \widetilde{\phi} U_{R}^{j} + \text{h.c.}$$

$$\mathcal{L}_{Y}^{\mathrm{SM}} = -\left(1 + \frac{h}{v}\right) \left[m_{d}\bar{d}d + m_{u}\bar{u}u + m_{e}\bar{e}e\right]$$

- With 3 gen trickier cannot simultaneously diagonalize u and d mixing: CKM matrix
- V_{CKM} unitary \Rightarrow 3 real parameters + 1 phase (CPV!)

$$\lambda$$
 A ρ η

CKM-ology

 λ A ρ η

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$\lambda = \sin \theta_C \approx 0.224$$
 $A \simeq 0.82$ $\sqrt{\rho^2 + \eta^2} \approx 0.45$

- Fix CKM entries through tree level processes; over constrain by loop-induced ones
- \vee VCKM unitary \Rightarrow 3 real parameters + 1 phase (CPV!)

Example: Kaon physics

Tree level decays

hadronic uncertainty!

$$K \to \pi \ell \nu$$

$$\langle \pi | \bar{s} \gamma_{\mu} u | K \rangle \to f_{0,+}(q^2)$$

$$K \to \mu \nu$$

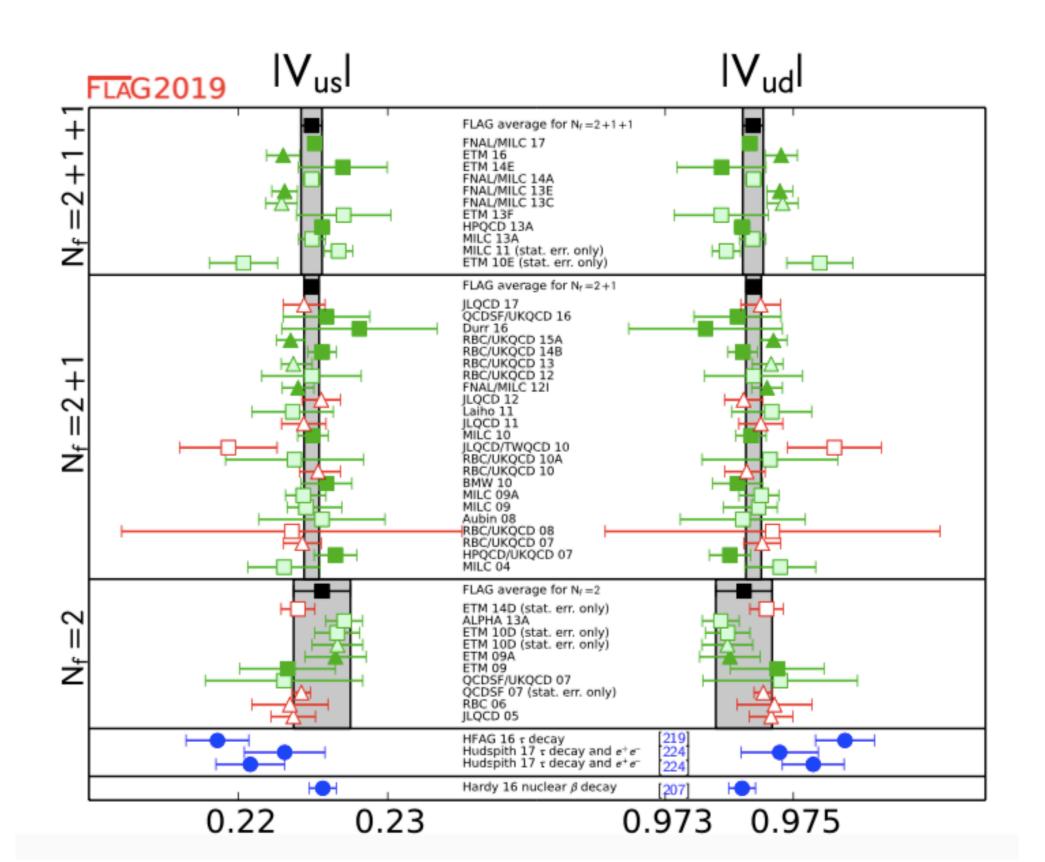
$$\langle 0 | \bar{s} \gamma_{\mu} \gamma_5 u | K \rangle \to f_K$$

$$f_K / f_{\pi}$$

Nonperturbative QCD - symmetries help (eg.Ademollo-Gatto) but ultimately needs LQCD

Huge coordinated effort! (cf. recent FLAG review - 2019)

LQCD



Experiments

```
K-factories
```

u,d,s [NA62, KOTO]

X Tau-charm

 τ ,c [BES III]

× B-factory

b,c,τ [Belle II]

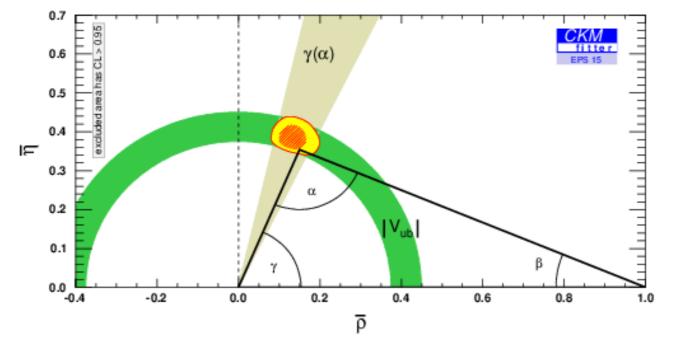
× LHC

t,b,c

× FCC

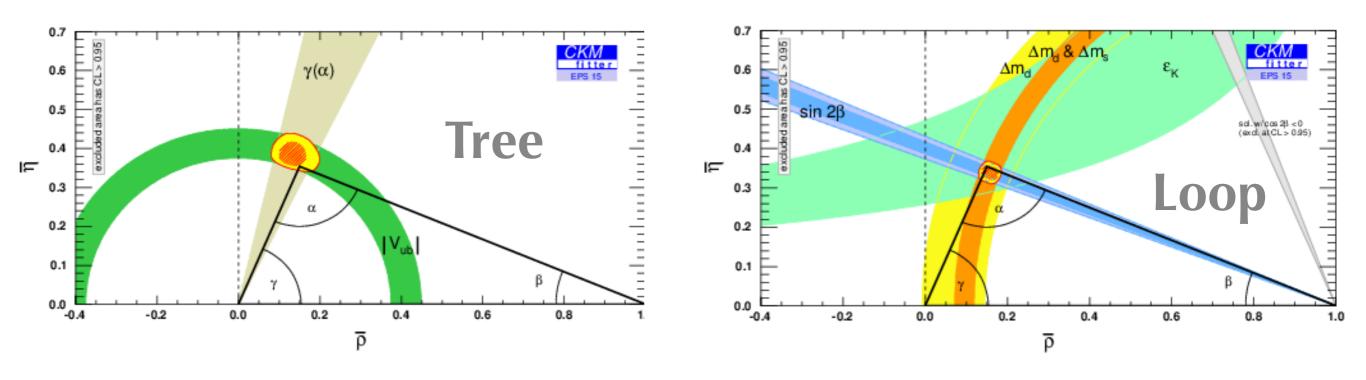
(Z),t,...

 \mathbf{x} ν F





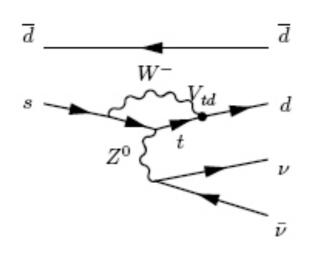
CKM

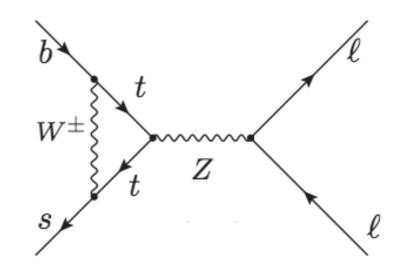


Impressively — TL UT and LP UT agree to less than 10% [Experiment will do better! Lattices will do better too!]
Only tensions in Vub and Vcb (inclusive Vs. exclusive) but all in all, CKM is very unitary!
2008, Nobel Prize

Strategy:

fix Vij by tree level processes, then look for NP in FCNC



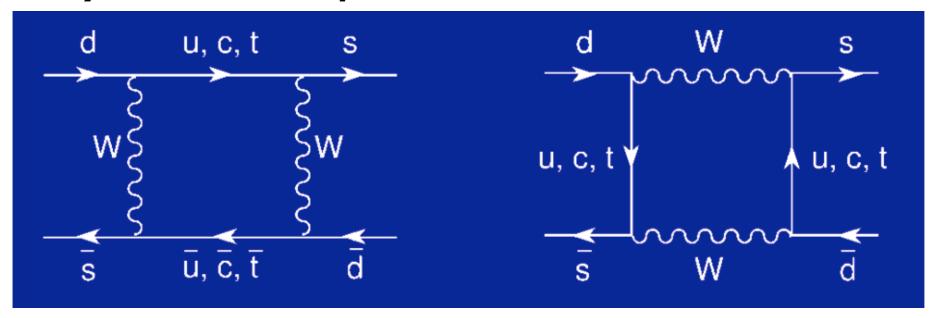


$$\mathcal{B}(B_s \to \mu^+ \mu^-)_{\text{theo.}} = 3.34 \, \binom{+13}{-25} \times 10^{-9} \quad \mathcal{B}(B_s \to \mu^+ \mu^-)_{\text{LHCb+CMS}} = 2.9(7) \times 10^{-9}$$

$$C_{ij}$$
 1 $V_{ti}V_{tj}^*$ $B_s \rightarrow \mu^+\mu^- > 10 \text{ TeV} > 2.5 \text{ TeV}$ $K \rightarrow \pi\nu\bar{\nu} > 100 \text{ TeV} > 1.8 \text{ TeV}$

$$O = \frac{1}{\Lambda^2} C_{ij} \bar{Q}_i \gamma^\mu Q_j H^\dagger D_\mu H$$

Strategy: fix V_{ij} by tree level processes, then look for NP in FCNC



$$O = \frac{1}{\Lambda^2} C'_{ij} \bar{Q}_i \gamma^\mu Q_j \bar{Q}_i \gamma_\mu Q_j$$

$$C'_{ij}$$
 1 $|V_{ti}V_{tj}^*|^2$
 $K^0 - \overline{K}^0$ > $2 \times 10^4 \text{ TeV}$ > 8 TeV
 $B^0 - \overline{B}^0$ > $0.5 \times 10^4 \text{ TeV}$ > 5 TeV
 $B_s^0 - \overline{B}_s^0$ > $0.1 \times 10^4 \text{ TeV}$ > 5 TeV

Flavor puzzle

$$C_{ij}$$
 1 $V_{ti}V_{tj}^*$
 $B_s \to \mu^+\mu^- > 10 \text{ TeV} > 2.5 \text{ TeV}$
 $K \to \pi\nu\bar{\nu} > 100 \text{ TeV} > 1.8 \text{ TeV}$

C_{ij}^{\prime}	1	$ V_{ti}V_{tj}^* ^2$
$K^0 - \overline{K}^0$	$> 2 \times 10^4 \text{ TeV}$	> 8 TeV
$B^0 - \overline{B}^0$	$> 0.5 \times 10^4 \text{ TeV}$	> 5 TeV
$B_s^0 - \overline{B}_s^0$	$> 0.1 \times 10^4 \text{ TeV}$	> 5 TeV

- For natural C~O(1), NP scale is huge
- Need lots of fine tuning to reduce NP scale to O(1TeV) as needed to mend the hierarchy problem
- Way out: NP is (almost) aligned with the SM
- · MFV

MFV

To protect quark flavor mixing BSM, assume flavor symmetry is the one present in the limit of vanishing Yukawa's, U(3)³, and that two quark Yukawa, Yu and Yd, are the only symmetry breaking and CP violating terms

$$\mathcal{L}_{Y}^{\mathrm{SM}} = -Y_{d}^{ij} \overline{Q}_{L}^{i} \phi D_{R}^{j} - Y_{u}^{ij} \overline{Q}_{L}^{i} \widetilde{\phi} U_{R}^{j} + \text{h.c.}$$

Promote Yu and Yd to non-dynamical fields. Higher dim operators made of SM fields and Yud.

Eigenvalues of Yud small except for top, off-diagonal elements suppressed $\Longrightarrow \left[Y_u(Y_u)^\dagger\right]_{i\neq j}^n \approx y_t^{2n}V_{ti}^*V_{tj}$

Questions and progress

- Why is there a flavor? Why families? Why 3?
- Why such a strong hierarchy?
- * Why quark mixing is small (and lepton mixing is large)?
- Why is there quark alignment?
- * How to solve strong CP-problem? [Peccei-Quinn elegant solution, but where are axions?]
- Need CPV in quark and lepton sector for BAU
- X Does the scalar sector play a non-trivial role in the questions of flavor?
- Work to figure out a symmetry which imposed on SM+2HDM provides a structure of Yukawas such that there is no FCNC at tree-level and their strength controlled by CKM (!)

LHC era

Before LHC was switched on we expected

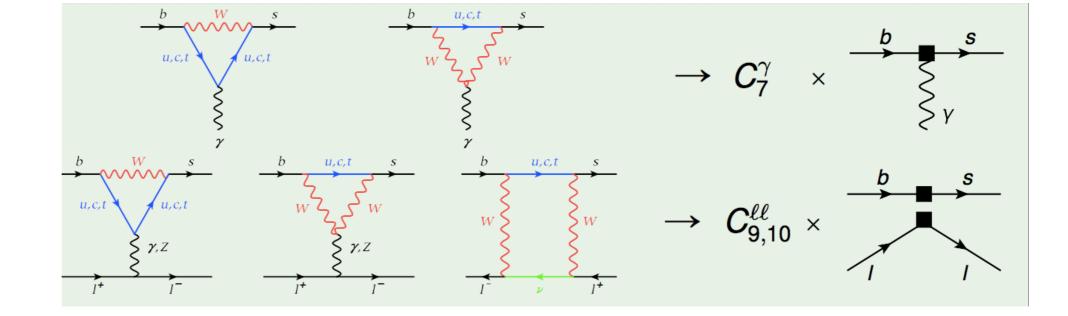
- (a) exciting physics in direct searches with many new resonances at TeV scale
- (b) boring but useful flavor physics

After the first two runs at LHC we got

- (a) slightly boring direct searches with no new resonance at TeV scale
- (b) exciting flavor physics

b----s anomalies

Basics



$$\mathcal{H}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2 + \sum_{i=3}^6 C_i \mathcal{O}_i + \sum_{i=7,8,9,10,P,S} (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') \right]$$

$$\mathcal{O}_{7} = \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{R} b) F^{\mu\nu}, \qquad \mathcal{O}_{7}' = \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{L} b) F^{\mu\nu}, \\
\mathcal{O}_{8} = \frac{1}{g} m_{b} (\bar{s} \sigma_{\mu\nu} T^{a} P_{R} b) G^{\mu\nu a}, \qquad \mathcal{O}_{8}' = \frac{1}{g} m_{b} (\bar{s} \sigma_{\mu\nu} T^{a} P_{L} b) G^{\mu\nu a}, \\
\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \mu), \qquad \mathcal{O}_{9}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \mu), \\
\mathcal{O}_{10} = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \qquad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \\
\mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \qquad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \\
\mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \qquad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \\
\mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \qquad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \\
\mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \qquad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \\
\mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \qquad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \\
\mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \qquad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu),$$

$$C_7^{\text{eff}} = \frac{4\pi}{\alpha_s} C_7 - \frac{1}{3} C_3 - \frac{4}{9} C_4 - \frac{20}{3} C_5 - \frac{80}{9} C_6$$

$$C_8^{\text{eff}} = \frac{4\pi}{\alpha_s} C_8 + C_3 - \frac{1}{6} C_4 + 20C_5 - \frac{10}{3} C_6$$

$$C_9^{\text{eff}} = \frac{4\pi}{\alpha_s} C_9 + Y(q^2)$$

$$\vdots$$

$$Y(q^{2}) = \frac{4}{3}C_{3} + \frac{64}{9}C_{5} + \frac{64}{27}C_{6} - \frac{1}{2}h(q^{2},0)\left(C_{3} + \frac{4}{3}C_{4} + 16C_{5} + \frac{64}{3}C_{6}\right)$$

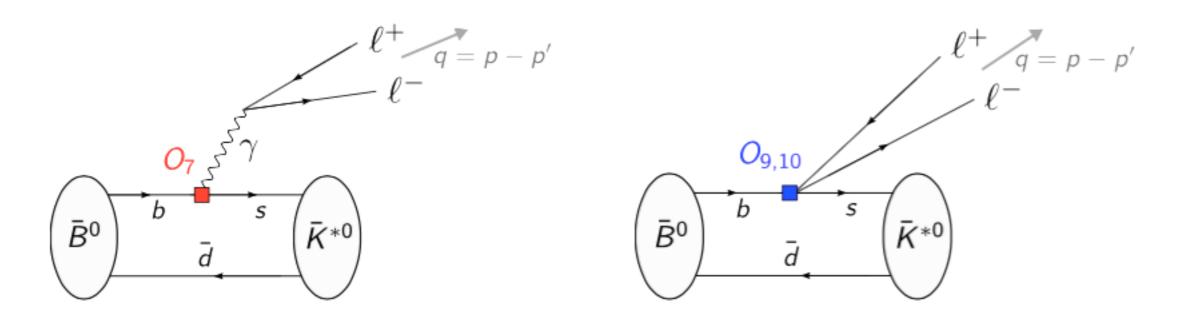
$$+h(q^{2}, m_{c})\left(\frac{4}{3}C_{1} + C_{2} + 6C_{3} + 60C_{5}\right) - \frac{1}{2}h(q^{2}, m_{b})\left(7C_{3} + \frac{4}{3}C_{4} + 76C_{5} + \frac{64}{3}C_{6}\right)$$

Very slowly varying functions of q²

$$\mathcal{M} = rac{\textit{G}_{\textit{F}}\,lpha}{\sqrt{2}\pi}\textit{V}_{\textit{tb}}\textit{V}_{\textit{ts}}^* \Big[(\mathcal{A}_{\mu} + \mathcal{T}_{\mu})ar{\emph{u}}_{\ell}\gamma^{\mu}\emph{v}_{\ell} + \mathcal{B}_{\mu}ar{\emph{u}}_{\ell}\gamma^{\mu}\gamma_{5}\emph{v}_{\ell} \Big],$$

$$\mathcal{A}_{\mu} = -\frac{2m_b}{q^2} q^{\nu} C_7 \langle K^* | \, \bar{s} \, i\sigma_{\mu\nu} \, \frac{1+\gamma_5}{2} \, b \, |B\rangle + C_9 \langle K^* | \, \bar{s} \gamma_{\mu} \, \frac{1-\gamma_5}{2} \, b \, |B\rangle$$

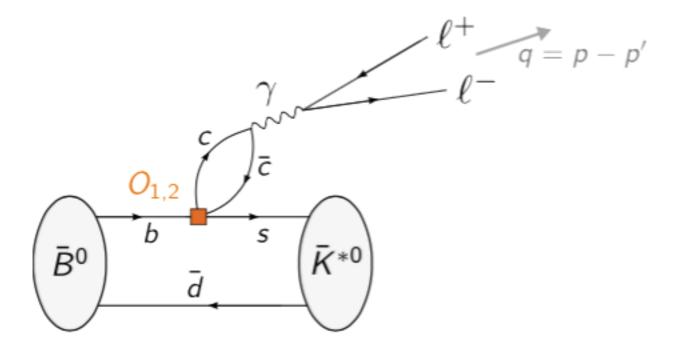
$$\mathcal{B}_{\mu} = C_{10} \langle K^* | \, \bar{s} \gamma_{\mu} \, \frac{1-\gamma_5}{2} \, b \, |B\rangle$$



Can be and are computed on the lattice

$$\mathcal{M} = rac{ extit{G}_{ extit{F}}\,lpha}{\sqrt{2}\pi}\, extit{V}_{ts}^* \Big[(\mathcal{A}_{\mu} + \mathcal{T}_{\mu})ar{ extit{u}}_{\ell}\gamma^{\mu} extit{v}_{\ell} + \mathcal{B}_{\mu}ar{ extit{u}}_{\ell}\gamma^{\mu}\gamma_5 extit{v}_{\ell} \Big],$$

$$T_{\mu} = \frac{-16i\pi^{2}}{q^{2}} \sum_{i=1...6;8} C_{i} \int d^{4}x \ e^{iq\cdot x} \langle K^{*} | T O_{i}(0) j_{\mu}(x) | B \rangle$$

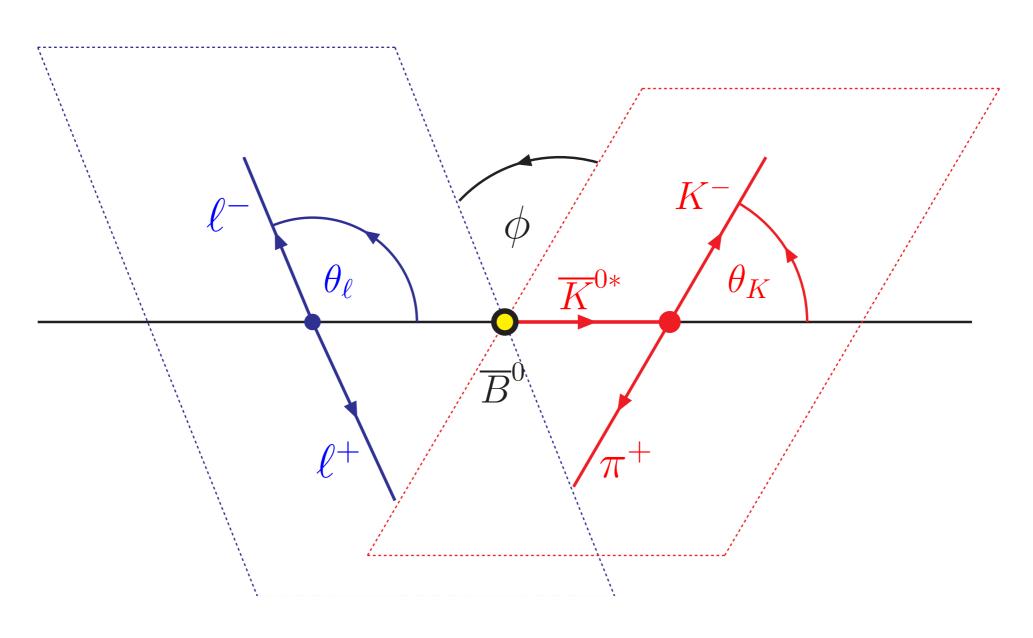


Cannot be computed on the lattice

- work either at very low or very high q²

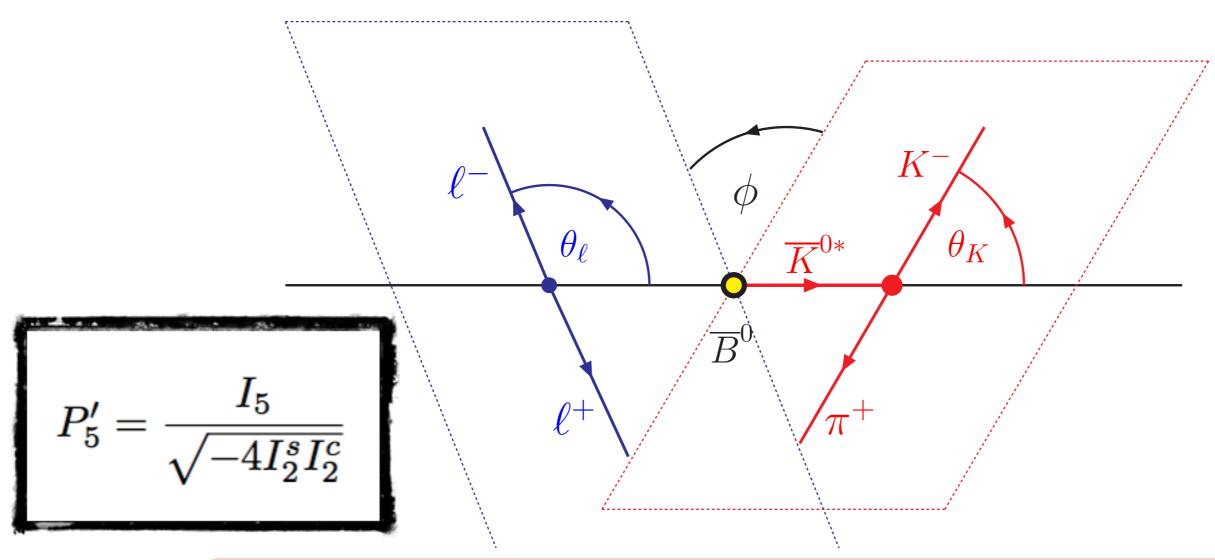
Better sensitivity to NP:

$$B \rightarrow K^* \ell^+\ell^-$$



$$\frac{d^{4}\Gamma(\bar{B}^{0} \to \bar{K}^{*0}\ell^{+}\ell^{-})}{dq^{2} d\cos\theta_{\ell} d\cos\theta_{K} d\phi} = \frac{9}{32\pi}I(q^{2}, \theta_{\ell}, \theta_{K}, \phi)$$

Full decay distribution



$$I(q^{2}, \theta_{\ell}, \theta_{K}, \phi) = I_{1}^{s}(q^{2}) \sin^{2}\theta_{K} + I_{1}^{c}(q^{2}) \cos^{2}\theta_{K} + \left[I_{2}^{s}(q^{2}) \sin^{2}\theta_{K} + I_{2}^{c}(q^{2}) \cos^{2}\theta_{K}\right] \cos 2\theta_{\ell}$$

$$+ I_{3}(q^{2}) \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \cos 2\phi + I_{4}(q^{2}) \sin 2\theta_{K} \sin 2\theta_{\ell} \cos \phi$$

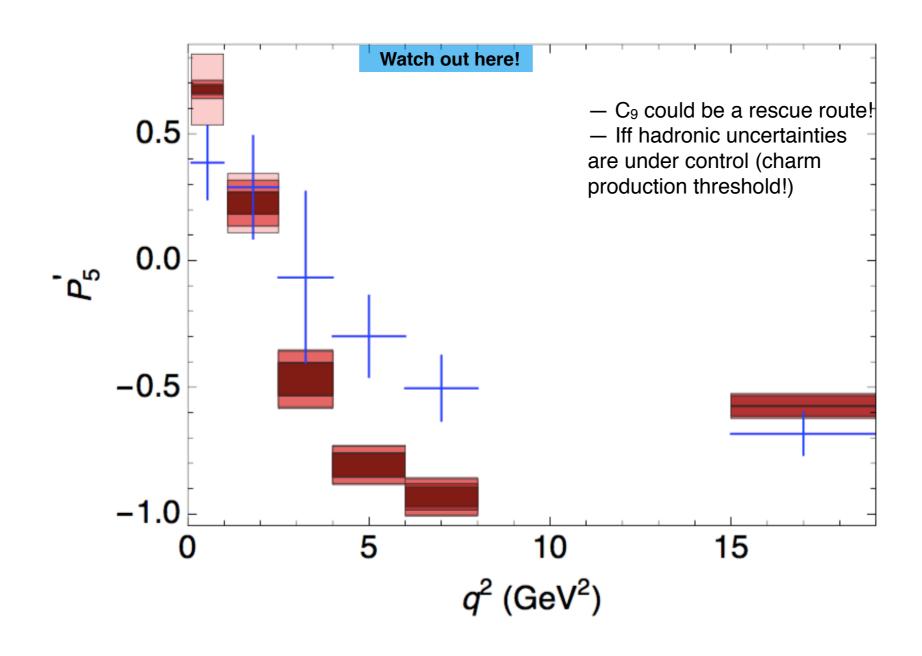
$$+ I_{5}(q^{2}) \sin 2\theta_{K} \sin \theta_{\ell} \cos \phi$$

$$+ \left[I_{6}^{s}(q^{2}) \sin^{2}\theta_{K} + I_{6}^{c}(q^{2}) \cos^{2}\theta_{K}\right] \cos \theta_{\ell} + I_{7}(q^{2}) \sin 2\theta_{K} \sin \theta_{\ell} \sin \phi$$

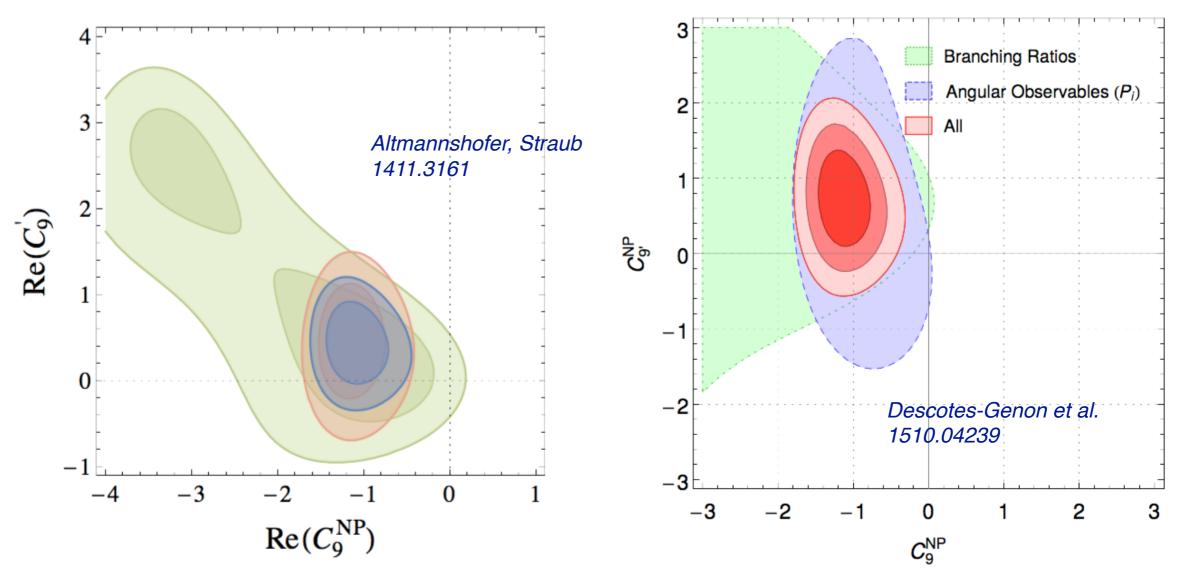
$$+ I_{8}(q^{2}) \sin 2\theta_{K} \sin 2\theta_{\ell} \sin \phi + I_{9}(q^{2}) \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \sin 2\phi$$

b----s anomalies

2-3 σ deviation from SM [esp. P₅']

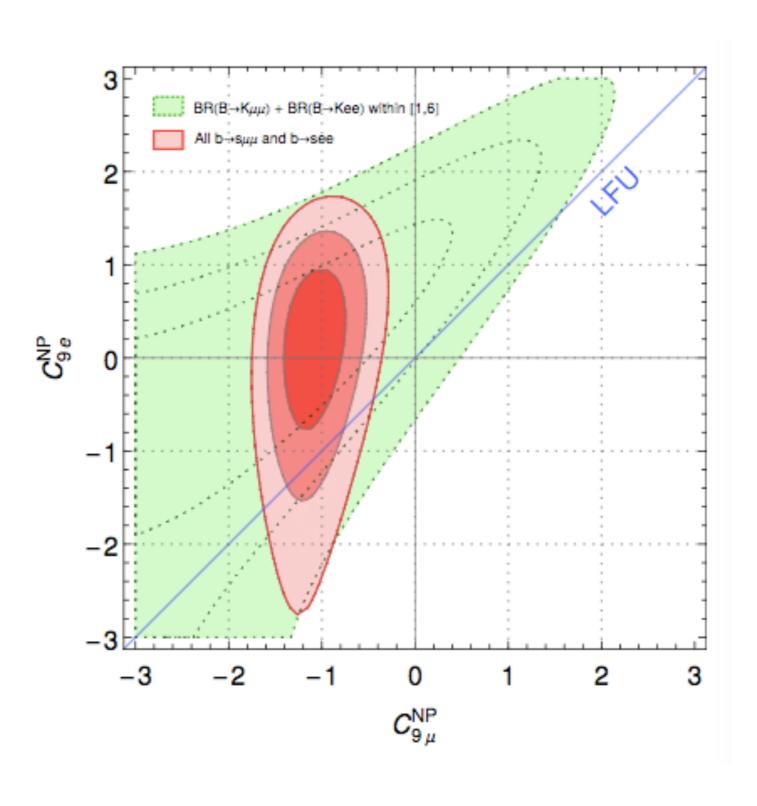


b---s anomalies



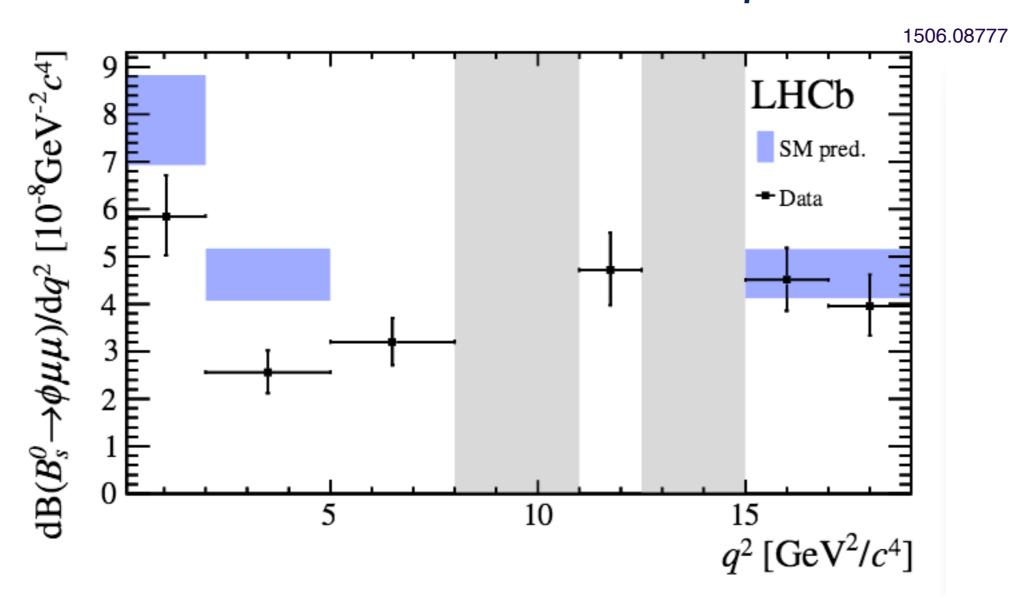
- Theory errors still subject to controversies.
- Some quantities are more sensitive to hadronic uncertainties than others (maybe sticking to the clean observables only?)
- Rome group claim the whole discrepancy can be absorbed into (unknown) power corrections due to charm loops.

Global analyses also suggest



b---s anomalies

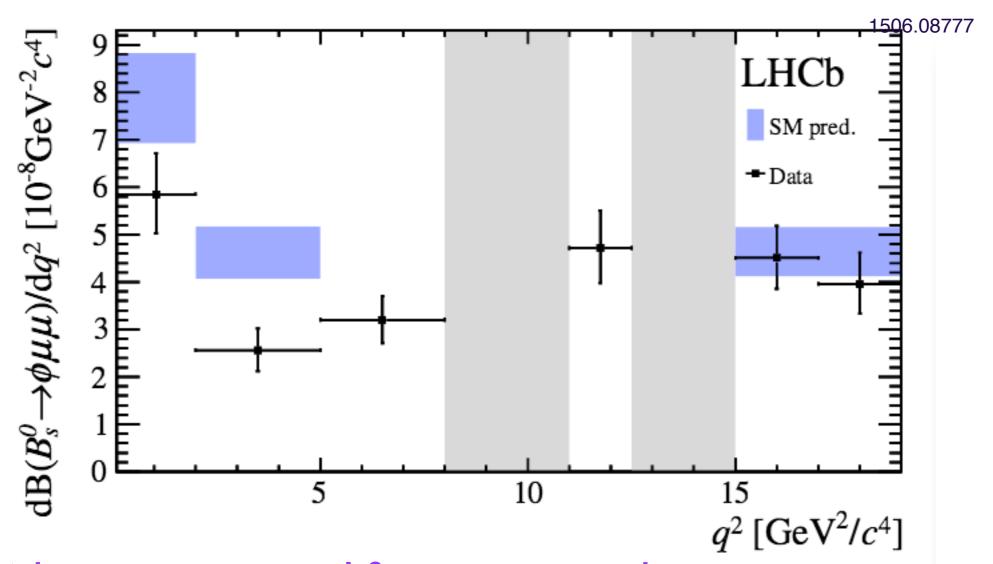
 3.1σ in Bs $\rightarrow \phi \mu \mu$ bellow SM at low q^2



$$\mathcal{B}(B_s \to \phi \mu \mu)^{[1-6]} \longrightarrow 0.26(4)_{LHCb} < 0.48(6)_{SM}$$

b---s anomalies

 3.1σ in Bs $\rightarrow \phi \mu \mu$ bellow SM at low q^2



What is it? Statistical fluctuation? Hadronic uncertainties? NP? Theory error - subject to controversies... If OK, then NP in C₉ could fill the gap between experiment and SM.

LFUV

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})} \& R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

$$\left[R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)} \bigg|_{q^2 \in [q_{\min}^2, q_{\max}^2]} \& \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\text{SM}} \right]$$

$$R_{D^{(*)}}^{\mathrm{exp}} > R_{D^{(*)}}^{\mathrm{SM}} \quad \Rightarrow \quad \Lambda_{\mathrm{NP}} \lesssim 3 \; \mathrm{TeV}$$
 $R_{K^{(*)}}^{\mathrm{exp}} < R_{K^{(*)}}^{\mathrm{SM}} \quad \Rightarrow \quad \Lambda_{\mathrm{NP}} \lesssim 30 \; \mathrm{TeV}$

RK RK*

$$R_{K^{(*)}} \equiv \left. \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} e e)} \right|_{q^2 \in [1,6] \, \mathrm{GeV^2}} \stackrel{\mathrm{SM}}{=} 1.00(1)$$

$$R_K^{\text{exp}} = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst})$$

2014 - 2015

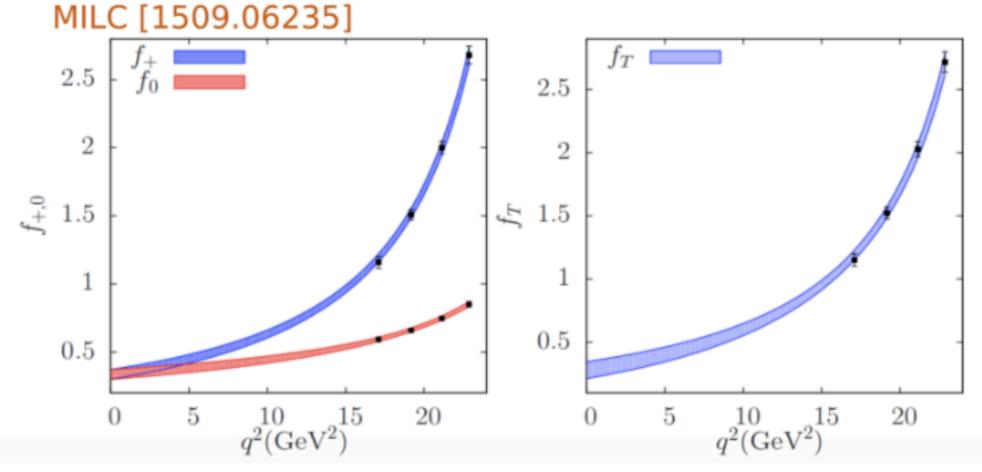
Fitting to clean observables

• Use $f_{B_s}^{Latt.} = 224(5) \text{ MeV}$ and $\mathcal{B}(B_s \to \mu\mu) = 3.0(6)(\frac{3}{2}) \times 10^{-9}$. [LHCb, 2017]

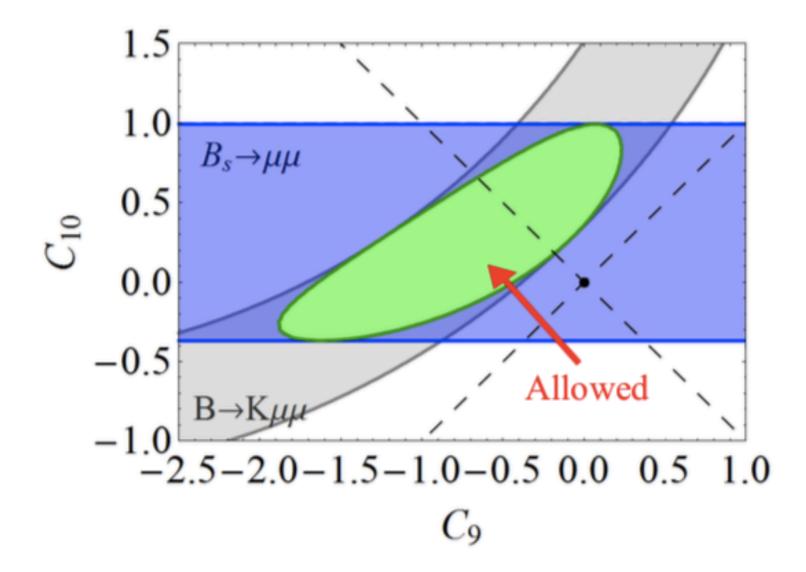
$$\mathcal{B}(B_s \to \mu^+ \mu^-) = \mathcal{F}_{B_s} \left(f_{B_s}, C_{10} - C'_{10}, C_P - C'_P, C_S - C'_S \right)$$

• Use $f_{+,0,T}^{B\to K}(q^2)^{Latt}$ and $\mathcal{B}(B\to K\mu\mu)_{q^2\in[15,22]\ \mathrm{GeV^2}}=1.95(16)\times 10^{-7}$. [LHCb, 2016]

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2}(B \to K\mu^+\mu^-) = \mathcal{F}_{BK}\left(\mathbf{f}_{+,0,T}(\mathbf{q^2}), C_9 + C_9', C_{10} + C_{10}', C_{7,S,P} + C_{7,S,P}'\right)$$



Fitting to clean observables



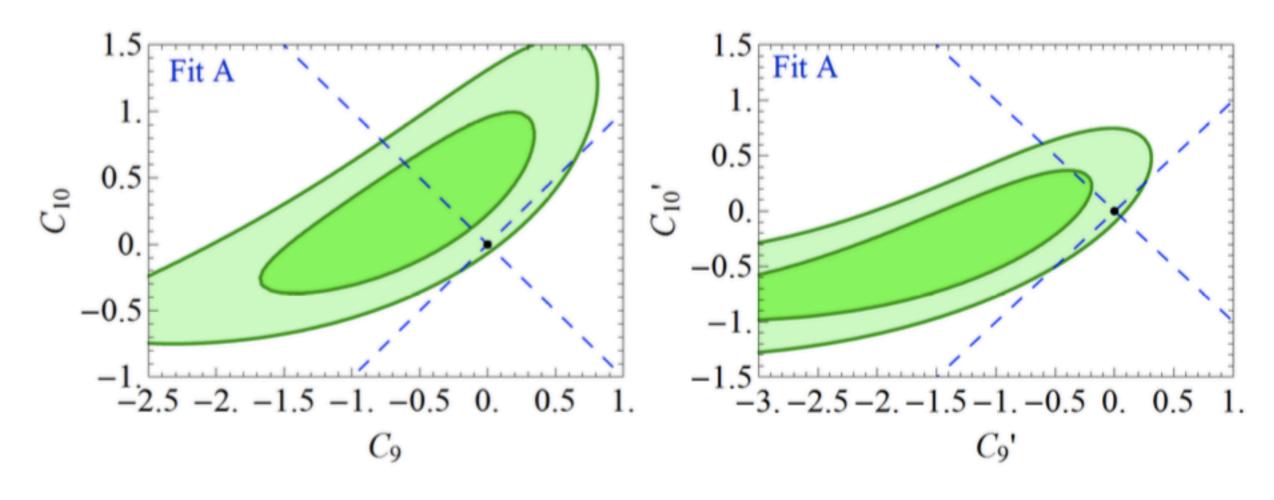
- We find $C_9 = -C_{10} \in (-0.76, -0.04)$ at 2σ .
- \Rightarrow This value can be used to give **model independent** predictions for $R_{K^{(*)}}$ in the <u>central bin</u>:

$$R_K = 0.82(16)$$
 and $R_{K^*} = 0.83(15)$.

$$C_9^{\mu\mu} = -C_{10}^{\mu\mu} \in (-0.85, -0.50)$$

Interestingly...

Different choices of Wilson Coeffs: (C_9, C_{10}) or (C'_9, C'_{10})

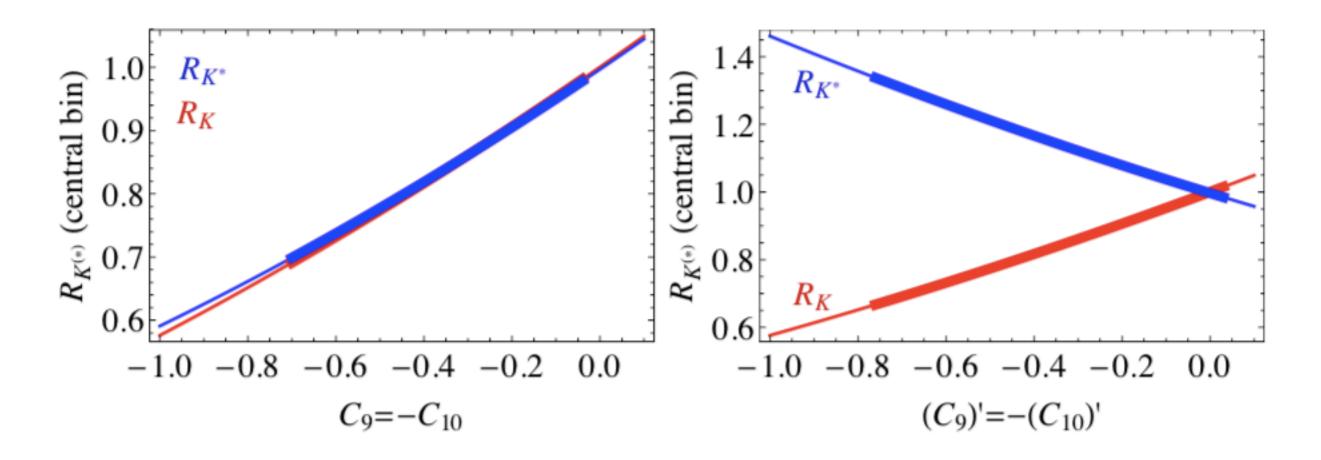


$$\mathcal{O}_9^{(\prime)} = (\bar{s}\gamma_\mu P_{L(R)}b)(\bar{\ell}\gamma^\mu\ell), \qquad \mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_\mu P_{L(R)}b)(\bar{\ell}\gamma^\mu\gamma^5\ell),$$

$$C_9^{\mu\mu} = -C_{10}^{\mu\mu} \in (-0.85, -0.50)$$

Interestingly...

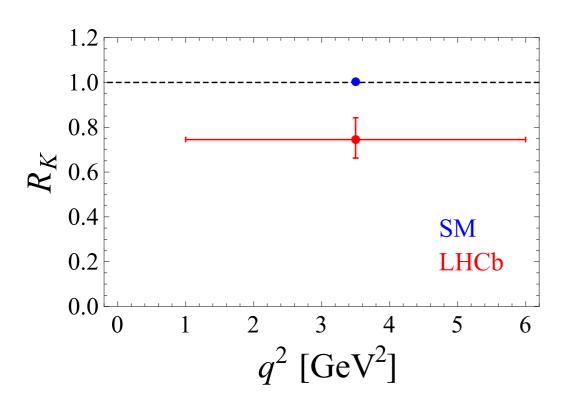
Model independent predictions for R_K and R_{K^*} :

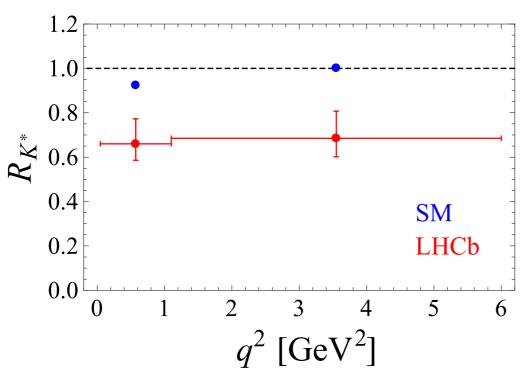


 \Rightarrow The scenario $C_9 = -C_{10}$ predicts $R_{K^{(*)}} < 1$, as observed.

$$C_9^{\mu\mu} = -C_{10}^{\mu\mu} \in (-0.85, -0.50)$$

Before and after Moriond EW 2019







• NEW [LHCb]:

$$[R_K^{\text{new}}]_{\text{avg}} = 0.85(6)$$

• Discrepancy between Run 1 and Run 2 [$\approx 2\sigma$]:

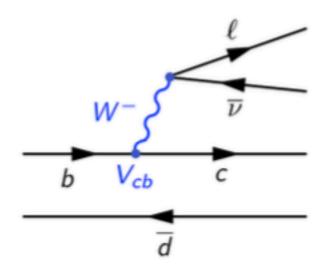
$$[R_K^{\rm new}]_{\rm run\ 1} = 0.71(8)$$

$$[R_K^{
m new}]_{
m run~2} = 0.92(8)$$

RD RD*

Tree-level process in the SM:

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})}, \quad \ell = e, \mu.$$

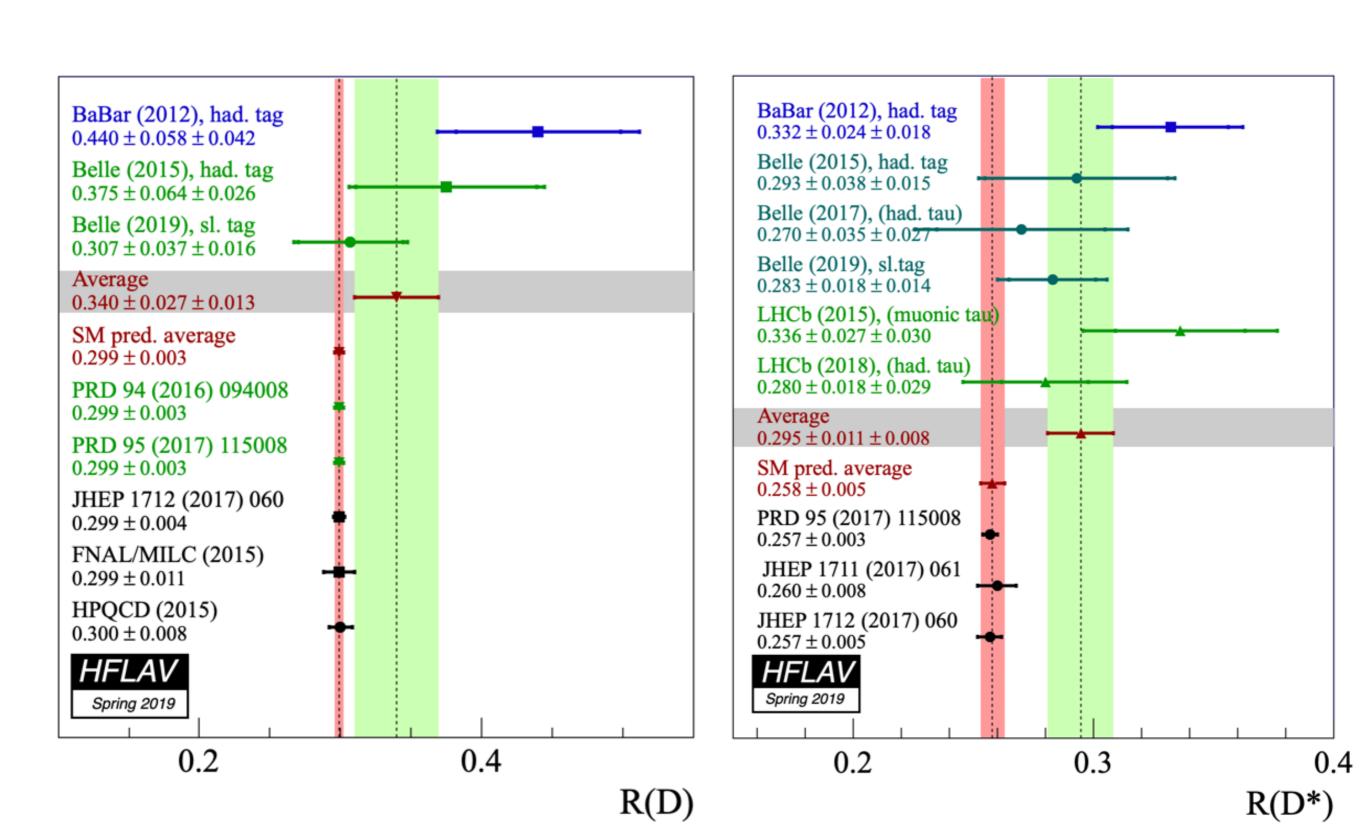


Non-perturbative QCD ←⇒ form-factors (Lattice QCD)

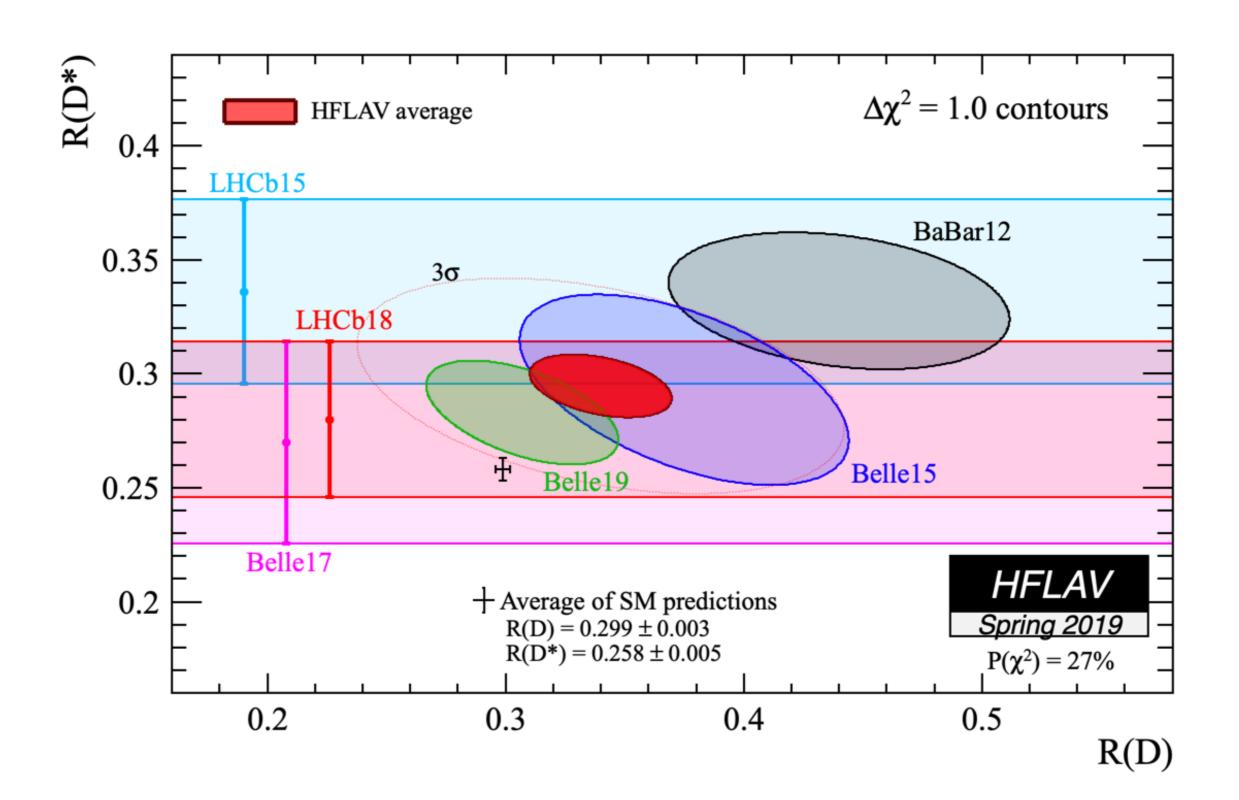
e.g. for
$$B \to D$$
, $\langle D|\bar{c}\gamma_{\mu}b|B\rangle \propto f_{0,+}(q^2)$

• Situation less clear for $B \to D^* \Rightarrow$ (more FFs, less LQCD results) [NP in τ – use angular distribution + HQET of Bernlochner et al 2017]

RD RD*



RD RD*



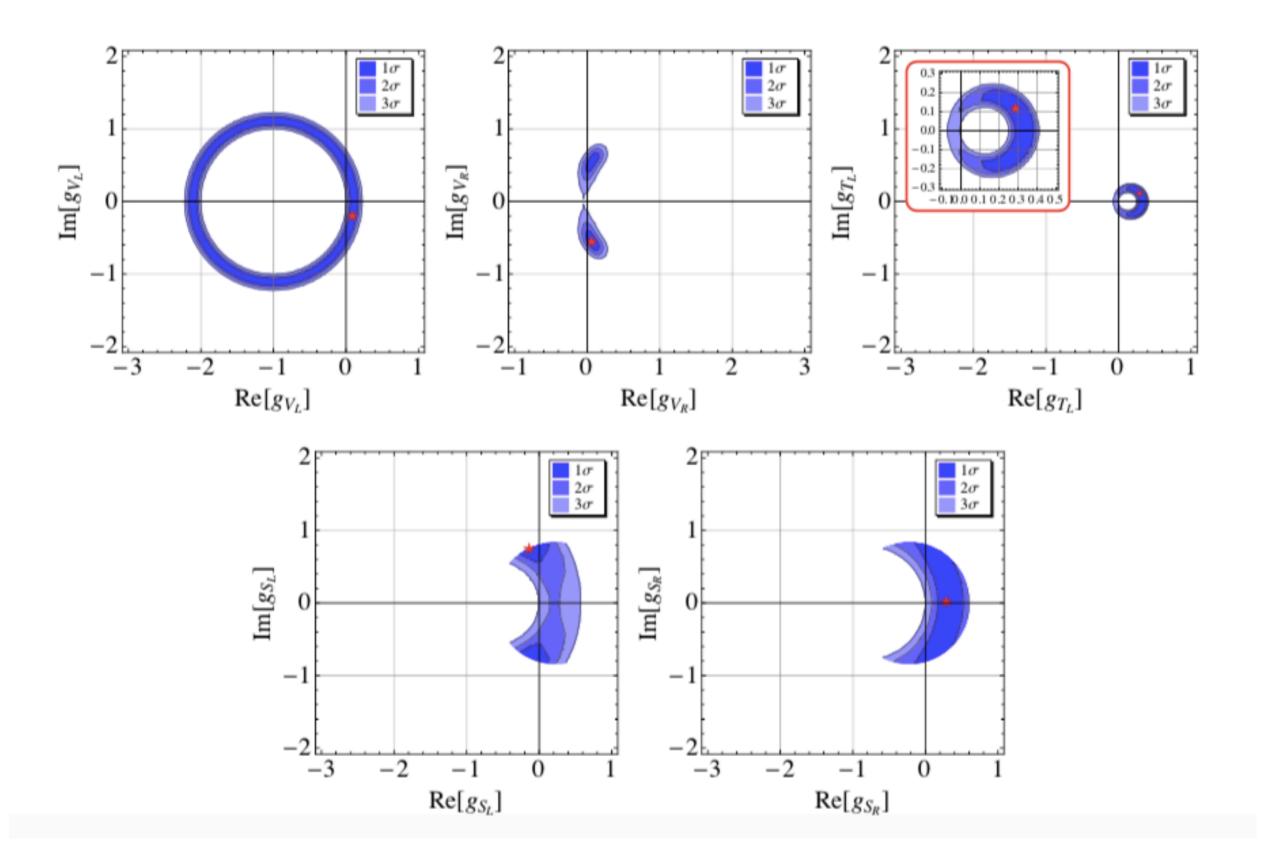
Effective theory

$$\mathcal{H}_{\text{eff}} = \sqrt{2}G_F V_{cb} \left[(1 + g_V)(\bar{c}\gamma_{\mu}b)(\bar{\ell}_L \gamma^{\mu}\nu_L) + (-1 + g_A)(\bar{c}\gamma_{\mu}\gamma_5 b)(\bar{\ell}_L \gamma^{\mu}\nu_L) \right. \\ \left. + g_S(\bar{c}b)(\bar{\ell}_R \nu_L) + g_P(\bar{c}\gamma_5 b)(\bar{\ell}_R \nu_L) \right. \\ \left. + g_T(\bar{c}\sigma_{\mu\nu}b)(\bar{\ell}_R \sigma^{\mu\nu}\nu_L) + g_{T5}(\bar{c}\sigma_{\mu\nu}\gamma_5 b)(\bar{\ell}_R \sigma^{\mu\nu}\nu_L) \right] + \text{h.c.}$$

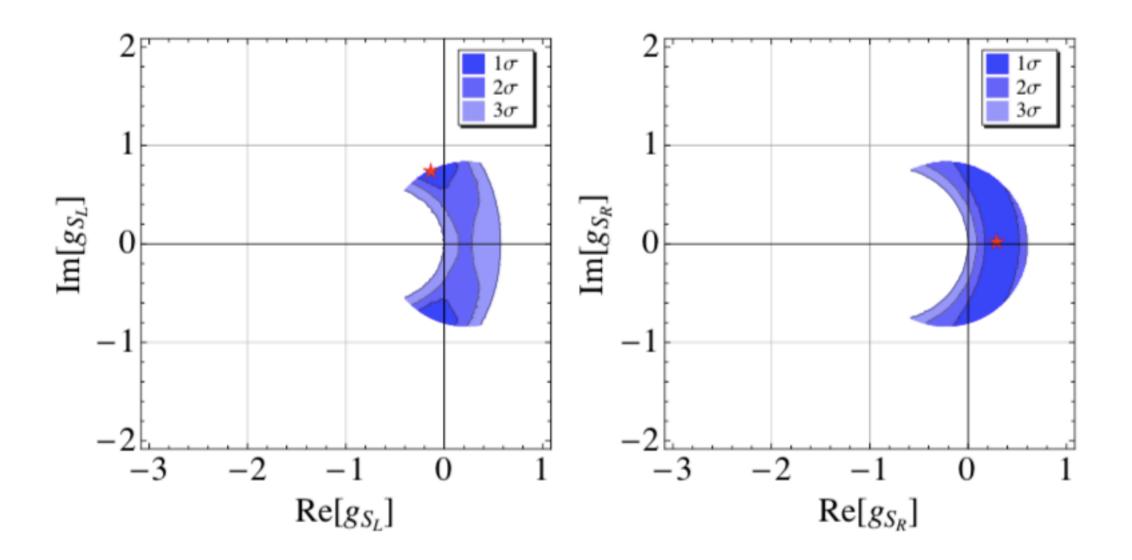
$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R}(\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) \right. \\ + g_{S_L}(\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_{S_R}(\bar{c}_L b_R)(\bar{\ell}_R \nu_L) \\ + g_{T_L}(\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \right] + \text{h.c.} ,$$

$$\frac{G_F}{\sqrt{2}} = \frac{1}{(1.7 \text{ TeV})^2}$$

Effective theory at work



Effective theory at work



$$\mathcal{B}(B_c \to \tau \bar{\nu}) = \tau_{B_c} \frac{m_{B_c} f_{B_c}^2 G_F^2 |V_{cb}|^2}{8\pi} m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_{B_c}^2} \right)^2 \left| 1 + \frac{(g_{S_R} - g_{S_L}) m_{B_c}^2}{m_{\tau} (m_b + m_c)} \right|^2$$

Must be less than 30%-ish in order not to upset τ_{B_c}

EFT - exclusive $b \to c \ell \nu$

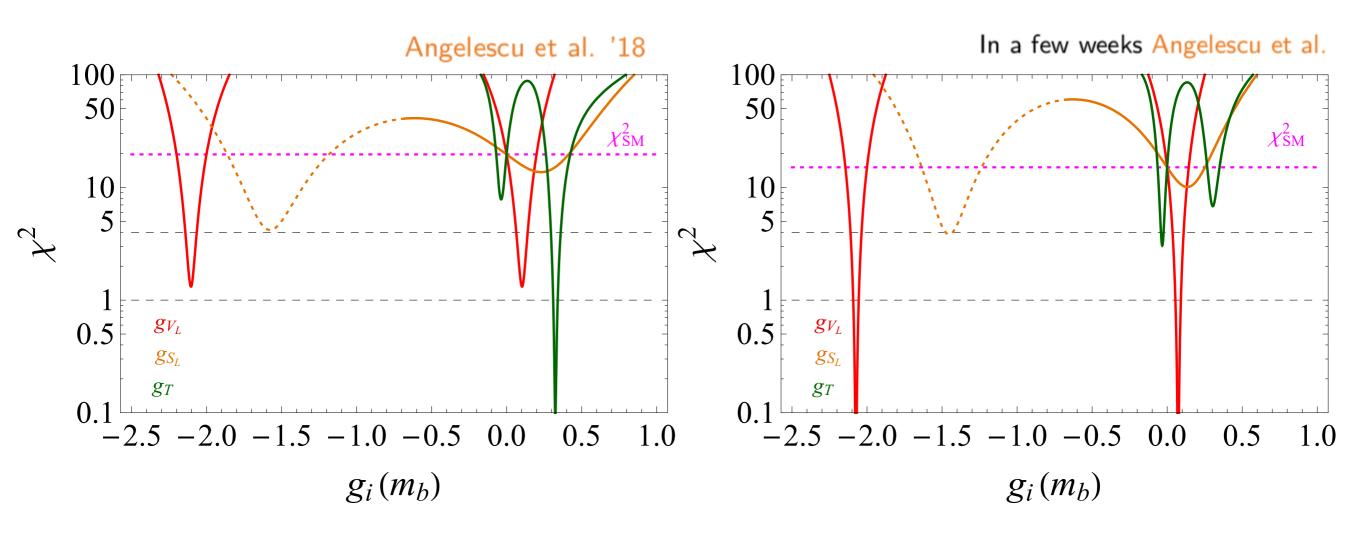
$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$

- $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance:
 - $\Rightarrow g_{V_R}$ is LFU at dimension 6 ($W\bar{c}_R b_R$ vertex).
 - \Rightarrow Four coefficients left: g_{V_L} , g_{S_L} , g_{S_R} and g_T .
- Several viable solutions to $R_{D(*)}$:

∘ e.g. g_{V_L} ∈ (0.04, 0.11), but not only!

[Freytsis et al. 2015]

Before and after Moriond EW 2019

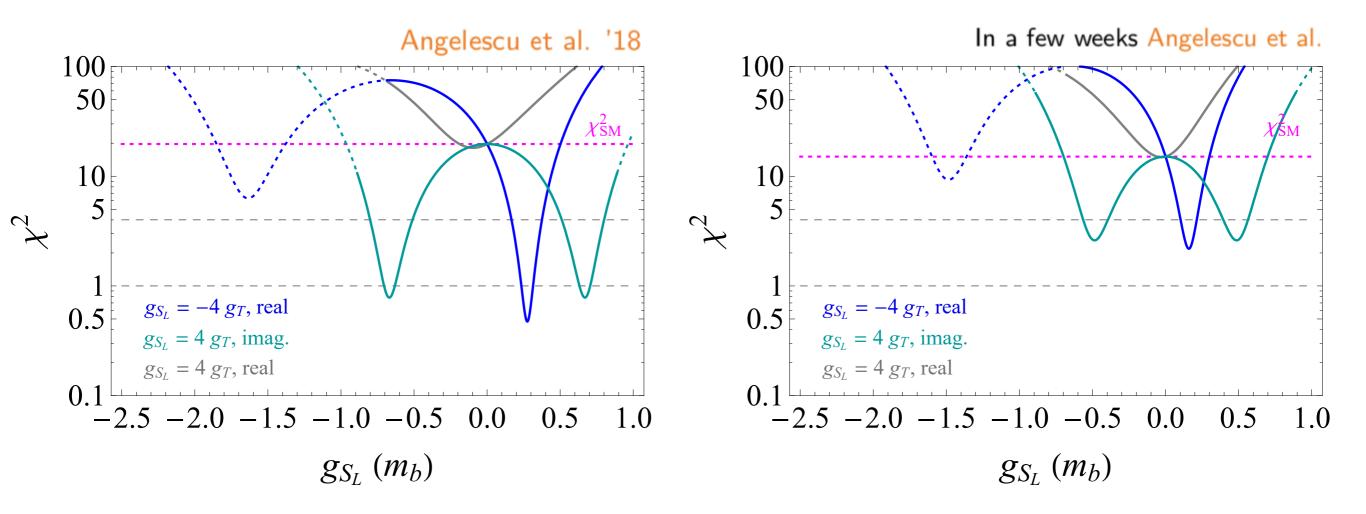


Updates of Freytsis et al. '15

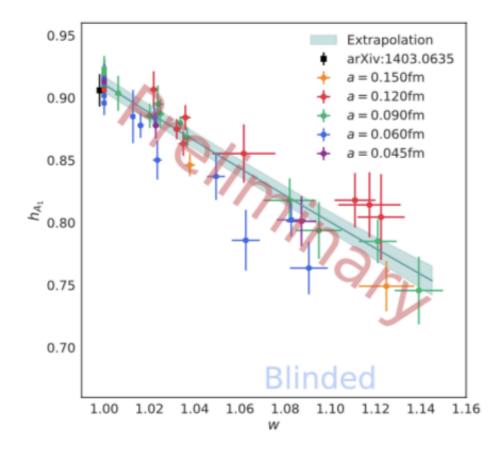
Which Lorentz structure to pick?

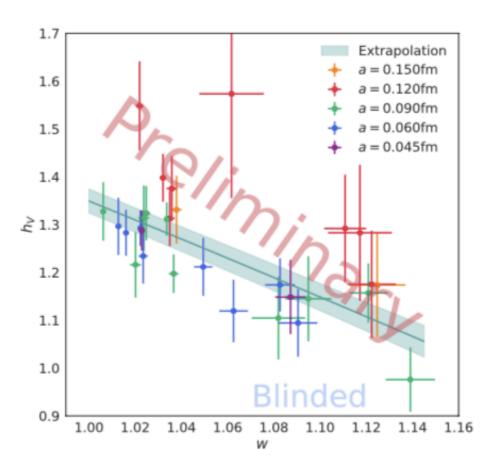
Observables from angular distribution of $B \to D^*(D\pi)\ell\nu$ can help

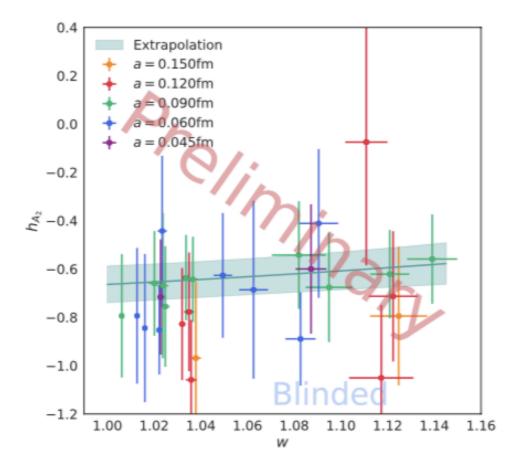
Before and after Moriond EW 2019

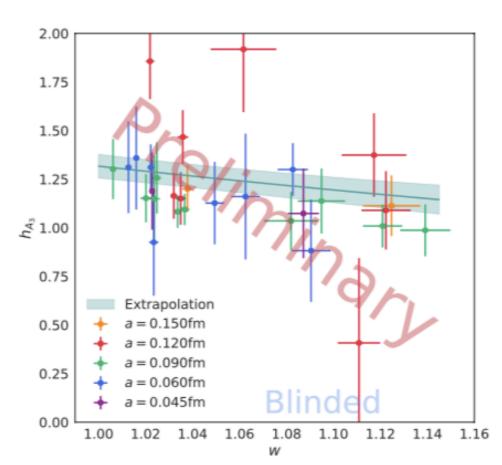


Main worry remain the hadronic uncertainties in the D* case: No lattice QCD study regarding the shapes of FFs Keep also in mind the SD part of the soft photon problem

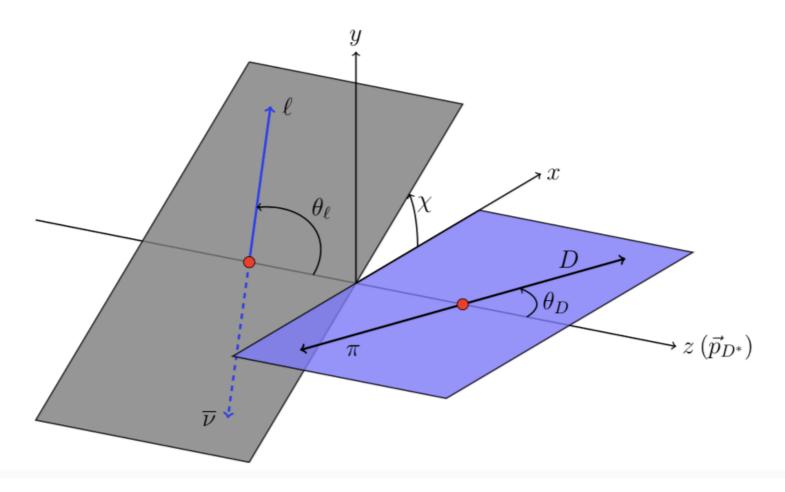








Angular analysis (Belle II - 202x)



$$\begin{split} \frac{d^4\Gamma}{dq^2d\cos\theta_Dd\cos\theta_\ell d\chi} &= \frac{9}{32\pi} \bigg\{ I_{1c}\cos^2\theta_D + I_{1s}\sin^2\theta_D \\ &\quad + \left[I_{2c}\cos^2\theta_D + I_{2s}\sin^2\theta_D \right]\cos2\theta_\ell \\ &\quad + \left[I_{6c}\cos^2\theta_D + I_{6s}\sin^2\theta_D \right]\cos\theta_\ell \\ &\quad + \left[I_3\cos2\chi + I_9\sin2\chi \right]\sin^2\theta_\ell\sin^2\theta_D \\ &\quad + \left[I_4\cos\chi + I_8\sin\chi \right]\sin2\theta_\ell\sin2\theta_D \\ &\quad + \left[I_5\cos\chi + I_7\sin\chi \right]\sin\theta_\ell\sin2\theta_D \bigg\} \,. \end{split}$$

$$\mathcal{L}_{Z'} = g_{bs}(\bar{s}\gamma^{\mu}P_Lb)Z'_{\mu} + g_{\mu\mu}(\bar{\mu}\gamma^{\mu}P_L\mu)Z'_{\mu}$$

$$\mathcal{L}_{Z'} = g_{bs}(\bar{s}\gamma^{\mu}P_Lb)Z'_{\mu} + g_{\mu\mu}(\bar{\mu}\gamma^{\mu}P_L\mu)Z'_{\mu}$$

What model can have this right?

• Eg. Add an extra gauge symmetry group U(1)'

$$\mathcal{L}_{U(1)'} = g' Q_q(\bar{q}_L \gamma^\mu q_L) Z'_\mu + g' Q_\ell(\bar{\ell}_L \gamma^\mu \ell_L) Z'_\mu$$

$$q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \qquad \ell_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$$

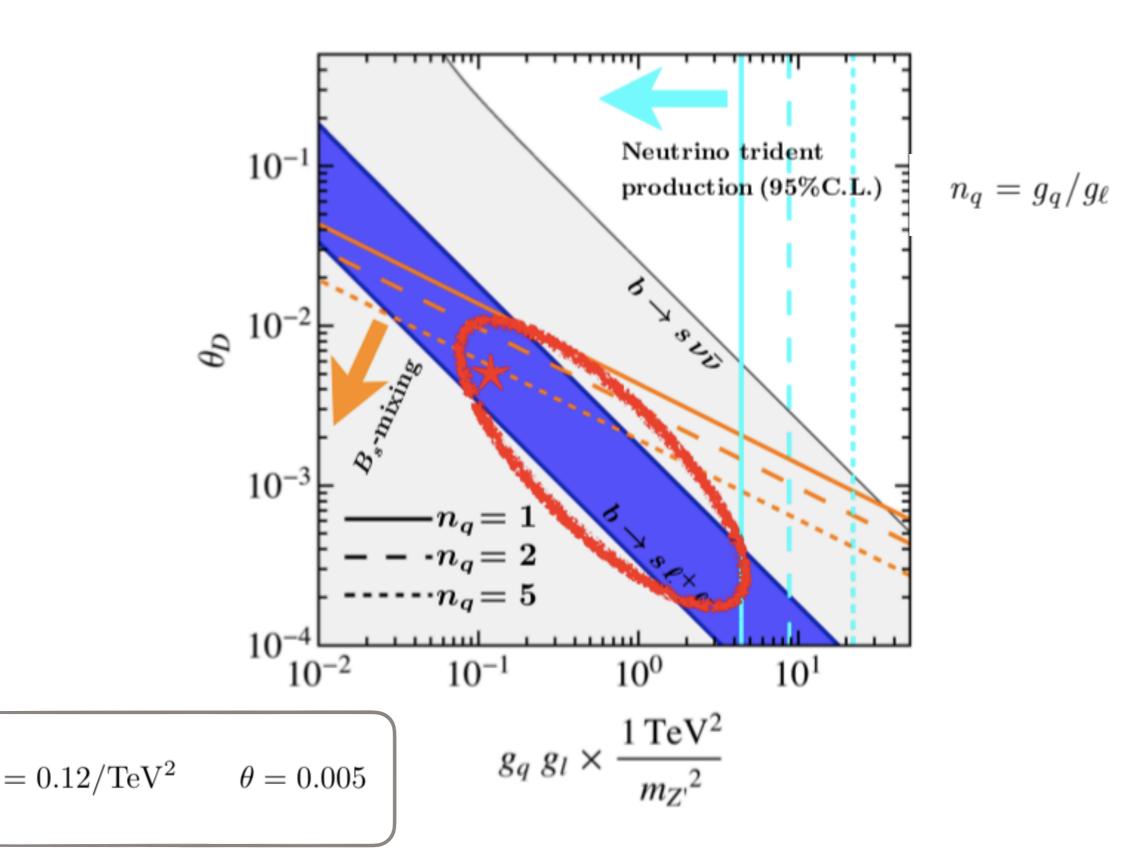
ullet Impose 3^{rd} -gen of quarks and 2^{nd} -gen of leptons to be charged under U(1)'

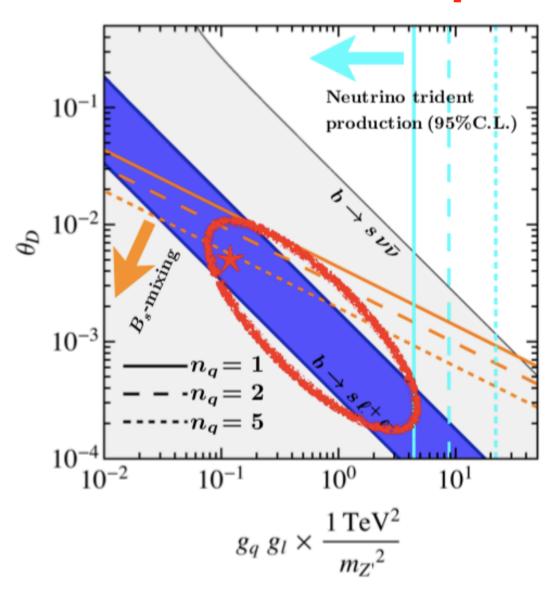
$$\mathcal{L}_{U(1)'} = g_q(\bar{q}_L^{(3)} \gamma^{\mu} q_L^{(3)}) Z_{\mu}' + g_{\ell}(\bar{\ell}_L^{(2)} \gamma^{\mu} \ell_L^{(2)}) Z_{\mu}'$$
$$q_L^{(3)} = \begin{pmatrix} t_L \\ b_L \end{pmatrix} \qquad \ell_L^{(2)} = \begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix} \qquad g_f = Q_f g'$$

bs coupling arises through mixing in the mass eigenbasis

$$q_L^{(3)} = \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}_{\text{gauge}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}_{\text{mass}}$$

Other fields don't feel U(1)'





$$\begin{split} \mathcal{L}_{U(1)'} &= \mathbf{g_q} \, (\bar{q}_L^3 \gamma^\mu q_L^3) Z'_\mu + \mathbf{g_\ell} \, (\bar{\ell}_L^2 \gamma^\mu \ell_L^2) Z'_\mu \\ &\quad + \mathbf{g_\chi} \, (\bar{\chi} \gamma^\mu \chi) Z'_\mu \end{split}$$

Leptoquarks

- Bosons which couple both to leptons and quarks
- Arise in GUT scenarios as gauge boson of \mathcal{G}_{GUT} e.g. $\mathcal{G}_{GUT}: SU(5), SO(10), SU(4) \otimes SU(2)_L \otimes SU(2)_R$
- 6 scalar and 6 vector LQ's
- ullet Generally very heavy, but some can be light, $m_{
 m LQ} \simeq {\cal O}(1)$

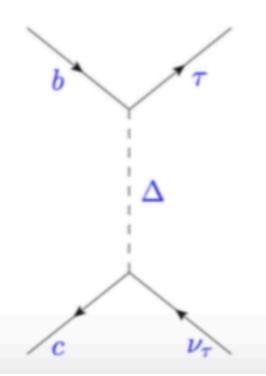
Symbol	Spin	$(SU(3)_c, SU(2)_L)_{U(1)_Y}$
S_1	0	$(\bar{3},1)_{1/3}$
S_3	0	$(\bar{3},3)_{1/3}$
R_2	0	$(\bar{3},2)_{7/6}$
\widetilde{R}_2	0	$(\bar{3},2)_{1/6}$
U_1	1	$(\bar{3},1)_{2/3}$
U_3	1	$(\bar{3},3)_{2/3}$

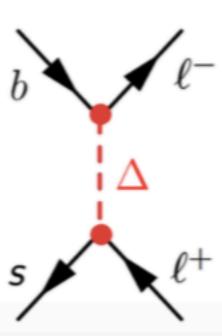
S₃ (3,3)_{1/3}

$$\mathcal{L}_{S_3} = y_L^{ij} \, \overline{Q_i^C} i \tau_2(\tau_k S_3^k) L_j + \text{h.c.}$$

$$\mathcal{L}_{S_3} = -y_L^{ij} \, \overline{d_{L\,i}^C} \nu_{L\,j} \, S_3^{(1/3)} - \sqrt{2} \, y_L^{ij} \, \overline{d_{L\,i}^C} \ell_{L\,j} \, S_3^{(4/3)}$$

$$+ \sqrt{2} \, (V^* y_L)_{ij} \, \overline{u_{L\,i}^C} \nu_{L\,j} \, S_3^{(-2/3)} - (V^* y_L)_{ij} \, \overline{u_{L\,i}^C} \ell_{L\,j} \, S_3^{(1/3)} + \text{h.c.}$$





S₃ (3,3)_{1/3}

$$\mathcal{L}_{S_3} = y_L^{ij} \overline{Q_i^C} i \tau_2(\tau_k S_3^k) L_j + \text{h.c.}$$

Indeed

$$C_9^{kl} = -C_{10}^{kl} = \frac{\pi v^2}{V_{tb} V_{ts}^* \alpha_{\text{em}}} \frac{y_L^{bk} (y_L^{sl})^*}{m_{S_3}^2}$$

$$g_{V_L} = -\frac{v^2 \, y_L^{b\ell'} \, (V y_L^*)_{c\ell}}{4 V_{cb} \, m_{S_3}^2} = -\frac{v^2}{4 m_{S_3}^2} y_L^{b\ell'} \Big[(y_L^{b\ell})^* + \frac{V_{cs}}{V_{cb}} (y_L^{s\ell})^* + \frac{V_{cd}}{V_{cb}} (y_L^{d\ell})^* \Big]$$

What LQ scenario for R_K and R_{K*}?

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	✓	X	X
$R_2 = (3, 2, 7/6)$	✓	✓ *	X
$S_3 = (\bar{3}, 3, 1/3)$	X	✓	X
$U_1 = (3, 1, 2/3)$	✓	✓	✓
$U_3 = (3, 3, 2/3)$	X	✓	X

N.B. U₁ is the only one to accommodate both!

Observable
$b \to s \mu \mu$
$b \to c \tau \nu$
$B(\tau \rightarrow \mu \phi)$
$\mathcal{B}(B \to \tau \nu)$
$\mathcal{B}(D_s \to \mu\nu)$
$\mathcal{B}(D_s \to \tau \nu)$
$r_K^{e/\mu}$
$r_K^{ au/\mu}$
$R_D^{\mu/e}$

$$U_1$$

$$\mathcal{L} = \mathbf{x}_{L}^{ij} \, \bar{Q}_{i} \gamma_{\mu} \, U_{1}^{\mu} L_{j} + \mathbf{x}_{R}^{ij} \, \bar{d}_{Ri} \gamma_{\mu} \, U_{1}^{\mu} \ell_{Rj} + \text{h.c.} \,,$$

 $x_L = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & x_L^{s\mu} & x_L^{s au} \ 0 & x_{ au}^{b\mu} & x_{ au}^{b au} \end{array}
ight)$

Assumptions:

$$x_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & x_L^{s\mu} & x_L^{s\tau} \\ 0 & x_L^{b\mu} & x_L^{b\tau} \end{pmatrix}, \qquad x_R \approx 0.$$

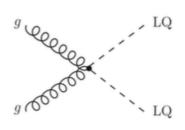
• $b \rightarrow c\tau\bar{\nu}$:

$$g_{V_L} = \frac{v^2}{2m_{U_1}^2} (x_L^{b\tau})^* \left(x_L^{b\tau} + \frac{V_{cs}}{V_{cb}} x_L^{s\tau} \right) \neq 0$$

• $b \rightarrow s\mu\mu$:

$$C_9^{\mu\mu} = -C_{10}^{\mu\mu} \propto -\frac{\pi v^2}{m_{U_1}^2} (x_L^{b\mu})^* x_L^{s\mu} \neq 0$$

• Other observables: $\tau \to \mu \phi$, $B \to \tau \bar{\nu}$, $D_{(s)} \to \mu \bar{\nu}$, $D_s \to \tau \bar{\nu}$, $K \to \mu \bar{\nu}/K \to e \bar{\nu}, \ \tau \to K \bar{\nu} \ \text{and} \ B \to D^{(*)} \mu \bar{\nu}/B \to D^{(*)} e \bar{\nu}.$



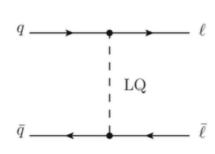
LQ pair-production via QCD:

 $m_{U_1}\gtrsim 1.5\;{
m TeV}$

[CMS-PAS-EXO-17-003]

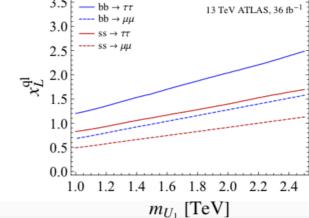
[assuming $\mathcal{B}(U_1 \to b\tau) \approx 0.5$]

Di-lepton tails at high-pT:

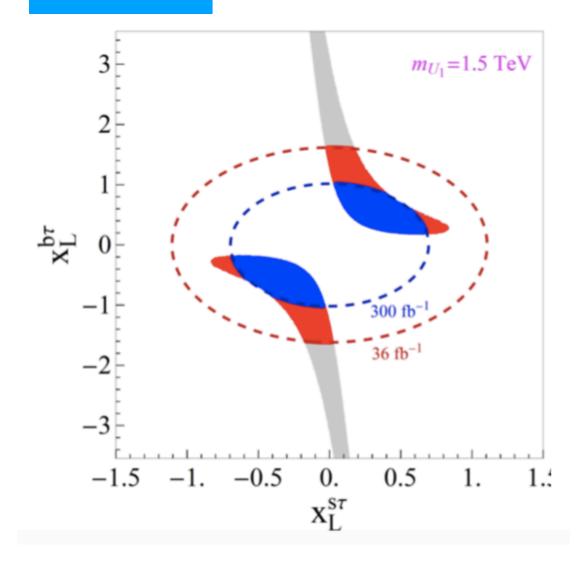


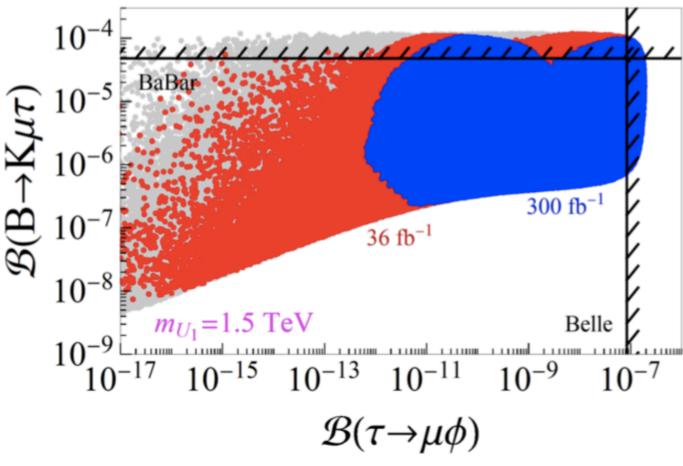
Angelescu et al '18, Faroughy et al '15

[ATLAS. 1707.02424,1709.07242]



U_1





$$\mathcal{B}(B \to K \mu \tau) \gtrsim \text{few} \times 10^{-7}$$

UV completion:

- Pati-Salam group, $\mathcal{G}_{PS}=SU(4)\times SU(2)_L\times SU(2)_R$, contains $U_1=(3,1,2/3)$.
- Viable extensions of $\mathcal{G}_{\mathrm{PS}}$ at the TeV scale have been proposed: $\Rightarrow U_1 + Z' + g'$ [+new fermions]. Di Luzio et al '17, Bordone et al. '17, Cornella et al '19

Back to SLQ's

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	✓	X	X
$R_2 = (3, 2, 7/6)$	✓	✓ *	×
$S_3 = (\bar{3}, 3, 1/3)$	X	✓	X
$U_1 = (3, 1, 2/3)$	✓	✓	✓
$U_3 = (3, 3, 2/3)$	X	✓	×

$b \rightarrow s\mu\mu$ $b \rightarrow c\tau\nu$ $\mathcal{B}(\tau \rightarrow \mu\phi)$ $\mathcal{B}(B \rightarrow \tau\nu)$ $\mathcal{B}(D_s \rightarrow \mu\nu)$ $\mathcal{B}(D_s \rightarrow \tau\nu)$

Observable

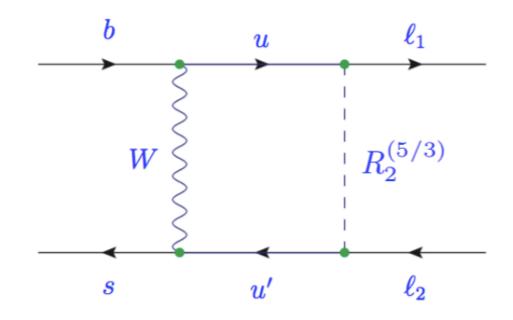
$$R_2$$

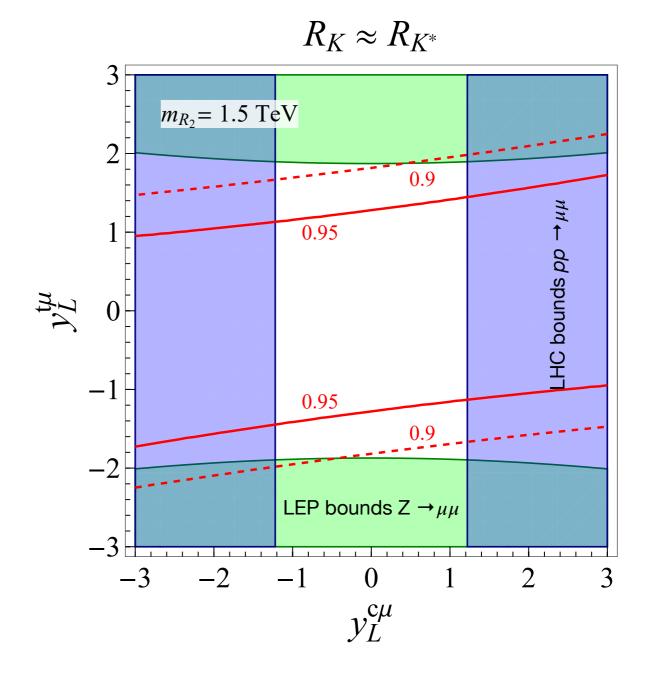
$$\mathcal{L}_{R_2} = y_R^{ij} \, \overline{Q}_i \ell_{Rj} \, R_2 - y_L^{ij} \, \overline{u}_{Ri} R_2 i \tau_2 L_j + \text{h.c.}$$

$$C_9^{kl} = C_{10}^{kl} \stackrel{\text{tree}}{=} -\frac{\pi v^2}{2V_{tb}V_{ts}^*\alpha_{\text{em}}} \frac{y_R^{sl}(y_R^{bk})^*}{m_{R_2}^2}$$

$$C_9^{kl} = -C_{10}^{kl} \stackrel{\text{loop}}{=} \sum_{u,u' \in \{u,c,t\}} \frac{V_{ub}V_{u's}^*}{V_{tb}V_{ts}^*} y_L^{u'k} \left(y_L^{ul}\right)^* \mathcal{F}(x_u, x_{u'})$$

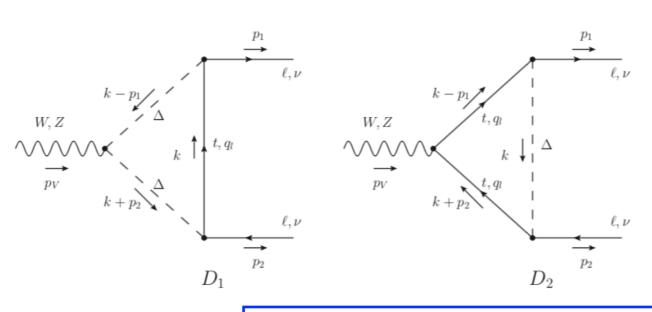
$$y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & 0 \\ 0 & y_L^{t\mu} & 0 \end{pmatrix} , \qquad y_R = 0$$

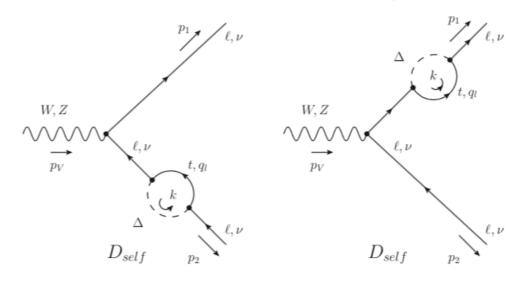




$Z \to \ell\ell$ and $Z \to \nu\nu$

Arnan, D.B., Mescia, Sumensari '19 [arXiv:1901.06315]





$$\delta \mathcal{L}_{\text{eff}}^{Z} = \frac{g}{\cos \theta_W} \sum_{f,i,j} \bar{f}_i \gamma^{\mu} \left[g_{f_L}^{ij} P_L + g_{f_R}^{ij} P_R \right] f_j Z_{\mu}$$

$$g_{f_{L(R)}}^{ij} = \delta_{ij} g_{f_{L(R)}}^{SM} + \delta g_{f_{L(R)}}^{ij}$$

$$g_{f_L}^{\text{SM}} = I_3^f - Q^f \sin^2 \theta_W$$
$$g_{f_R}^{\text{SM}} = -Q^f \sin^2 \theta_W$$

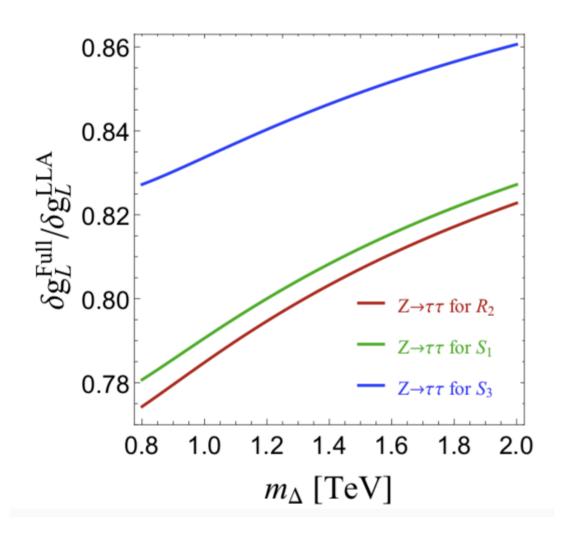
$$g_V^{e, \exp} = -0.03817(47)$$
 $g_A^{e, \exp} = -0.50111(35)$
 $g_V^{\mu, \exp} = -0.0367(23)$ $g_A^{\mu, \exp} = -0.50120(54)$
 $g_V^{\tau, \exp} = -0.0366(10)$ $g_A^{\tau, \exp} = -0.50204(64)$

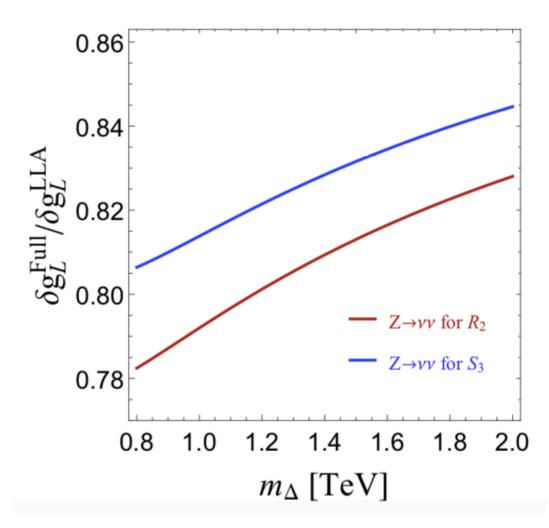
. .

$$\delta \mathcal{L}_{\text{eff}}^{Z} = \frac{g}{\cos \theta_W} \sum_{f,i,j} \bar{f}_i \gamma^{\mu} \left[g_{f_L}^{ij} P_L + g_{f_R}^{ij} P_R \right] f_j Z_{\mu}$$

$$g_{f_{L(R)}}^{ij} = \delta_{ij} g_{f_{L(R)}}^{SM} + \delta g_{f_{L(R)}}^{ij}$$

$$g_{fL}^{SM} = I_3^f - Q^f \sin^2 \theta_W$$
$$g_{fR}^{SM} = -Q^f \sin^2 \theta_W$$





LLA: $\mathcal{O}(x_t \log x_t)$, $\mathcal{O}(x_Z \log x_Z)$ $x_j = m_j^2/m_{\Delta}^2$

Feruglio et al. '17 and '18

Full: most significant $\mathcal{O}(x_Z \log x_t)$

S₃ & R₂ Model

D.B., Dorsner, Fajfer, Faroughy, Kosnik, Sumensari '18 [arXiv:1806.05689]

In flavor basis

$$\mathcal{L} \supset y_R^{ij} \, \bar{Q}_i \ell_{Rj} R_2 + y_L^{ij} \, \bar{u}_{Ri} L_j \tilde{R}_2^{\dagger} + y^{ij} \, \bar{Q}_i^{C} i \tau_2 (\tau_k S_3^k) L_j + \text{h.c.}$$

$$R_2 = (3, 2, 7/6), \, S_3 = (\bar{3}, 3, 1/3)$$

In mass-eigenstates basis

$$\mathcal{L} \supset (V_{\text{CKM}} y_R E_R^{\dagger})^{ij} \bar{u}'_{Li} \ell'_{Rj} R_2^{(5/3)} + (y_R E_R^{\dagger})^{ij} \bar{d}'_{Li} \ell'_{Rj} R_2^{(2/3)}$$

$$+ (U_R y_L U_{\text{PMNS}})^{ij} \bar{u}'_{Ri} \nu'_{Lj} R_2^{(2/3)} - (U_R y_L)^{ij} \bar{u}'_{Ri} \ell'_{Lj} R_2^{(5/3)}$$

$$- (y U_{\text{PMNS}})^{ij} \bar{d}'_{Li}^C \nu'_{Lj} S_3^{(1/3)} - \sqrt{2} y^{ij} \bar{d}'_{Li}^C \ell'_{Lj} S_3^{(4/3)}$$

$$+ \sqrt{2} (V_{\text{CKM}}^* y U_{\text{PMNS}})_{ij} \bar{u}'_{Li}^C \nu'_{Lj} S_3^{(-2/3)} - (V_{\text{CKM}}^* y)_{ij} \bar{u}'_{Li}^C \ell'_{Lj} S_3^{(1/3)} + \text{h.c.}$$

and assume

$$y_R = y_R^T \qquad y = -y_L$$

$$y_R E_R^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \ U_R y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}, \ U_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

Parameters: m_{R_2} , m_{S_3} , $y_R^{b\tau}$, $y_L^{c\mu}$, $y_L^{c\tau}$ and θ

Effective Lagrangian at $\mu \approx m_{\rm LQ}$:

• $b \rightarrow c\tau\bar{\nu}$:

NB. $\Lambda_{\rm NP}/g_{\rm NP}\approx 1~{\rm TeV}$

$$\propto \frac{y_L^{c\tau} y_R^{b\tau*}}{m_{R_2}^2} \left[(\bar{c}_R b_L)(\bar{\tau}_R \nu_L) + \frac{1}{4} (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\tau}_R \sigma^{\mu\nu} \nu_L) \right] + \dots$$

• $b \rightarrow s\mu\mu$:

NB. $\Lambda_{\rm NP}/g_{\rm NP} \approx 30 \text{ TeV}$

$$\propto \sin 2 heta \, rac{|y_L^{c\mu}|^2}{m_{S_3}^2} \, (ar s_L \gamma^\mu \, b_L) (ar \mu_L \gamma_\mu \mu_L)$$

 $\bullet \ \Delta m_{B_s}$:

$$\propto \sin^2 2\theta \; \frac{\left[\left(y_L^{c\mu} \right)^2 + \left(y_L^{c\tau} \right)^2 \right]^2}{m_{S_3}^2} (\bar{s}_L \gamma^{\mu} b_L)^2$$

- \Rightarrow Suppression mechanism of $b \to s \mu \mu$ wrt $b \to c \tau \bar{\nu}$ for small $\sin 2\theta$. \Rightarrow Phenomenology suggests $\theta \approx \pi/2$ and $y_R^{b\tau}$ complex

Other notable constraints...

• $r_{e/\mu}^{K \text{ exp}} = 2.488(10) \times 10^{-5}$ [PDG], $r_{e/\mu}^{K \text{ SM}} = 2.477(1) \times 10^{-5}$ [Cirigliano 2007]

$$r_{e/\mu}^K = \frac{\Gamma(K^- \to e^- \bar{\nu})}{\Gamma(K^- \to \mu^- \bar{\nu})}$$

• $R_{\mu/e}^{D \text{ exp}} = 0.995(45)$ [Belle 2017], $R_{\mu/e}^{D^* \text{ exp}} = 1.04(5)$ [Belle 2016]

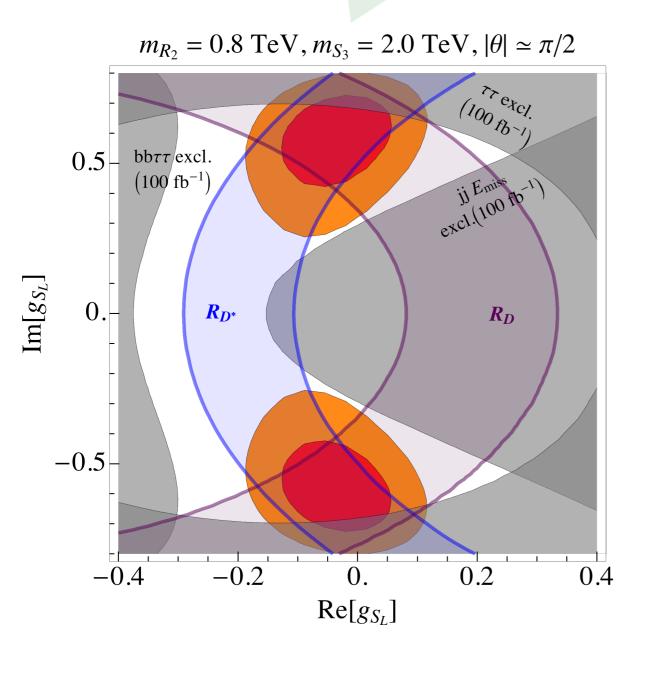
$$R_{\mu/e}^{D^{(*)}} = \frac{\Gamma(B \to D^{(*)} \mu \bar{\nu})}{\Gamma(B \to D^{(*)} e \bar{\nu})}$$

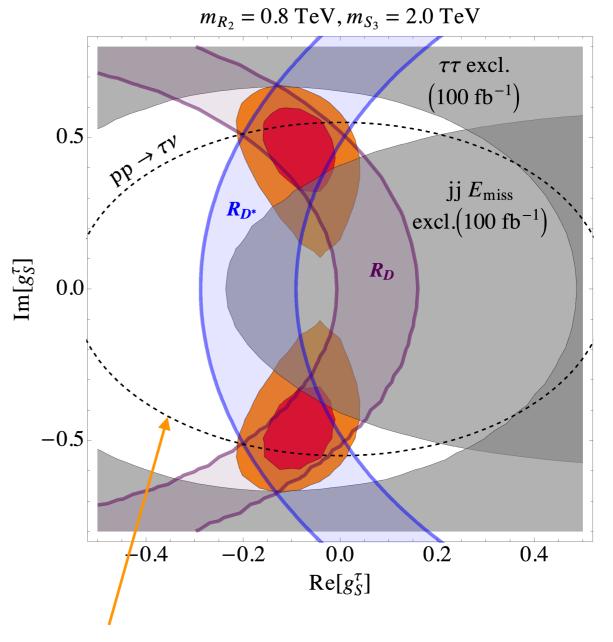
- $\mathcal{B}(\tau \to \mu \phi) < 8.4 \times 10^{-8} \text{ [PDG]}$
- Loops: $\Delta m_{B_s}^{\rm exp} = 17.7(2)~{\rm ps}^{-1}$ [PDG], $\Delta m_{B_s}^{\rm SM} = (19.0 \pm 2.4)~{\rm ps}^{-1}$ [FLAG 2016]
- Loops: $Z \to \mu\mu$, $Z \to \tau\tau$, $Z \to \nu\nu$ [PDG]

$$\frac{g_V^{\tau}}{g_V^e} = 0.959(29) \,, \quad \frac{g_A^{\tau}}{g_A^e} = 1.0019(15) \qquad \frac{g_V^{\mu}}{g_V^e} = 0.961(61) \,, \quad \frac{g_A^{\mu}}{g_A^e} = 1.0001(13)$$

$$N_{\nu}^{\text{exp}} = 2.9840(82)$$

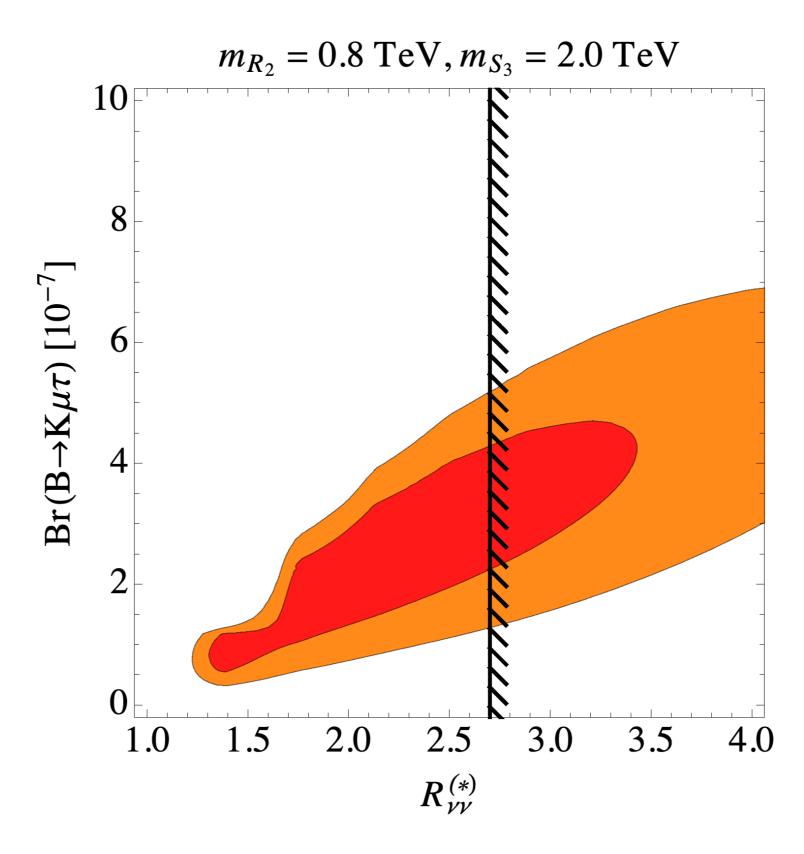
Before and after Moriond EW 2019





Greljo et al. '18

Bounds should be less stringent when considering propagating LQ!



Common lore - Zurich Guide

NP to CC processes

$$\mathcal{L}_{\text{BSM}} = \frac{2c}{\Lambda^2} (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_\tau) + h.c.$$

$$c_i = 1$$
 $\rightarrow \Lambda \sim 3.7 \text{ TeV}$
 $c_i = V_{cb}$ $\rightarrow \Lambda \sim 0.7 \text{ TeV}$
 $c_i = V_{cb}/4\pi \rightarrow \Lambda \sim 0.2 \text{ TeV}$

$$C_T (\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta)$$

$$Q_L^i = \begin{pmatrix} V_{ji}^* u_L^j \\ d_L^i \end{pmatrix}$$

NP in FCNC

$$\mathcal{L} \supset \frac{c_i}{\Lambda^2} (\bar{s}_L \gamma^{\alpha} b_L) (\bar{\mu}_L \gamma_{\alpha} \mu_L) + h.c.$$

$$c_i = 1$$
 $\rightarrow \Lambda \sim 31 \text{ TeV}$
 $c_i = V_{ts}$ $\rightarrow \Lambda \sim 6 \text{ TeV}$
 $c_i = V_{ts}/4\pi \rightarrow \Lambda \sim 0.5 \text{ TeV}$

$$C_T (\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S (\bar{Q}_L^i \gamma_\mu Q_L^j) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta)$$

Effective theory

$$\frac{1}{v^2}\lambda^q_{ij}\lambda^\ell_{\alpha\beta}\left[C_T\ (\bar{Q}^i_L\gamma_\mu\sigma^aQ^j_L)(\bar{L}^\alpha_L\gamma^\mu\sigma^aL^\beta_L) + C_S\ (\bar{Q}^i_L\gamma_\mu Q^j_L)(\bar{L}^\alpha_L\gamma^\mu L^\beta_L)\right]$$

CC and NC

- Dominant effect in 3rd generation
- Small effects with lighter fermions
- Mixing CKMish

$$\lambda^{\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda_{\mu\mu} & \lambda_{\tau\mu} \\ 0 & \lambda_{\tau\mu} & 1 \end{pmatrix} \qquad \lambda^{q} = \begin{pmatrix} 0 & 0 & \lambda_{bs} \frac{V_{ub}}{V_{cb}} \\ 0 & \lambda_{ss} & \lambda_{bs} \\ \lambda_{bs} \frac{V_{ub}}{V_{cb}} & \lambda_{bs} & 1 \end{pmatrix}$$

Parameters: C_S C_T $\lambda_{bs} = \mathcal{O}(V_{ts})$ $\lambda_{ss} = \mathcal{O}(\lambda_{bs}^2)$ $\lambda_{\mu\mu} = \mathcal{O}(\lambda_{\mu\tau}^2)$

Tricky part

$$\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\text{SM}}} \simeq 1 + 2C_T \left(1 - \lambda_{sb}^q \frac{V_{tb}}{V_{ts}}\right) \approx 1.24(5)$$

$$33 - \operatorname{term} : -\frac{C_T}{v^2} (\overline{Q}_L^3 \gamma_\mu \sigma^a Q_L^3) (\overline{L}_L^3 \gamma_\mu \sigma^a L_L^3)$$

$$32 - \operatorname{term} : -\frac{C_T}{v^2} \lambda_{bs}^q (\overline{Q}_L^3 \gamma_\mu \sigma^a Q_L^2) (\overline{L}_L^3 \gamma_\mu \sigma^a L_L^3)$$

$$Q_L^3 = \begin{pmatrix} V_{tb}^* t_L + V_{cb}^* c_L + V_{ub}^* u_L \\ b_L \end{pmatrix}$$

Tricky part

Tricky part
$$\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\rm SM}} \simeq 1 + 2\frac{C_T}{C_T} \left(1 - \lambda_{sb}^q \frac{V_{tb}}{V_{ts}}\right) \approx 1.24(5)$$

$$33 - \text{term} : -\frac{C_T}{v^2} (\overline{Q}_L^3 \gamma_\mu \sigma^a Q_L^3) (\overline{L}_L^3 \gamma_\mu \sigma^a L_L^3)$$

$$32 - \text{term} : -\frac{C_T}{v^2} \lambda_{bs}^q (\overline{Q}_L^3 \gamma_\mu \sigma^a Q_L^2) (\overline{L}_L^3 \gamma_\mu \sigma^a L_L^3)$$

$$Q_L^3 = \begin{pmatrix} V_{tb}^* t_L + V_{cb}^* c_L + V_{ub}^* u_L \\ b_L \end{pmatrix}$$
 Needs 0.1

too large NP at 700 GeV - Sic! (direct searches)

Tricky part

$$\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\text{SM}}} \simeq 1 + 2C_T \left(1 - \lambda_{sb}^q \frac{V_{tb}}{V_{ts}}\right) \approx 1.24(5)$$

$$33 - \operatorname{term} : -\frac{C_T}{v^2} (\overline{Q}_L^3 \gamma_\mu \sigma^a Q_L^3) (\overline{L}_L^3 \gamma_\mu \sigma^a L_L^3)$$

$$32 - \operatorname{term} : -\frac{C_T}{v^2} \lambda_{bs}^q (\overline{Q}_L^3 \gamma_\mu \sigma^a Q_L^2) (\overline{L}_L^3 \gamma_\mu \sigma^a L_L^3)$$

Beware of $B \to K^{(*)}\nu\nu!$ $(C_T - C_S)\lambda_{bs}(\bar{b}_L\gamma_\mu s_L)(\bar{\nu}_\tau\gamma^\mu\nu_\tau)$

